Tính giá trị
\left(x+\left(6-i\right)\right)\left(x+\left(6+i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Khai triển
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Bài kiểm tra
Complex Number
( x - ( - 6 - i ) ) ( x - ( - 6 + i ) ) ( x - ( - 1 + 3 i ) ) ( x - ( - 1 + 3 i ) )
Chia sẻ
Đã sao chép vào bảng tạm
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân x-\left(-1+3i\right) với x-\left(-1+3i\right) để có được \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Số đối của số -6-i là 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng tính chất phân phối để nhân x+\left(6+i\right) với x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng tính chất phân phối để nhân x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) với \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân -1 với -6+i để có được 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân -1 với -1+3i để có được 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng tính chất phân phối để nhân x với x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của x^{2}+\left(6-i\right)x với một số hạng của x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Kết hợp \left(2-6i\right)x^{3} và \left(6-i\right)x^{3} để có được \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Kết hợp \left(-8-6i\right)x^{2} và \left(6-38i\right)x^{2} để có được \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân -1 với -6+i để có được 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Nhân -1 với -1+3i để có được 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Sử dụng tính chất phân phối để nhân 6+i với x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của \left(6+i\right)x+37 với một số hạng của x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
Kết hợp \left(18-34i\right)x^{2} và 37x^{2} để có được \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Kết hợp \left(-42-44i\right)x và \left(74-222i\right)x để có được \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Kết hợp \left(8-7i\right)x^{3} và \left(6+i\right)x^{3} để có được \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
Kết hợp \left(-2-44i\right)x^{2} và \left(55-34i\right)x^{2} để có được \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Kết hợp \left(-54-28i\right)x và \left(32-266i\right)x để có được \left(-22-294i\right)x.
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân x-\left(-1+3i\right) với x-\left(-1+3i\right) để có được \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Số đối của số -6-i là 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng tính chất phân phối để nhân x+\left(6+i\right) với x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng tính chất phân phối để nhân x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) với \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân -1 với -6+i để có được 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân -1 với -1+3i để có được 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Sử dụng tính chất phân phối để nhân x với x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của x^{2}+\left(6-i\right)x với một số hạng của x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Kết hợp \left(2-6i\right)x^{3} và \left(6-i\right)x^{3} để có được \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Kết hợp \left(-8-6i\right)x^{2} và \left(6-38i\right)x^{2} để có được \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Nhân -1 với -6+i để có được 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Nhân -1 với -1+3i để có được 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Sử dụng tính chất phân phối để nhân 6+i với x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của \left(6+i\right)x+37 với một số hạng của x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
Kết hợp \left(18-34i\right)x^{2} và 37x^{2} để có được \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Kết hợp \left(-42-44i\right)x và \left(74-222i\right)x để có được \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Kết hợp \left(8-7i\right)x^{3} và \left(6+i\right)x^{3} để có được \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
Kết hợp \left(-2-44i\right)x^{2} và \left(55-34i\right)x^{2} để có được \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Kết hợp \left(-54-28i\right)x và \left(32-266i\right)x để có được \left(-22-294i\right)x.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}