Tính giá trị
\left(x^{2}-y^{2}\right)\left(-\left(xy\right)^{2}+\left(x^{2}+y^{2}\right)^{2}\right)
Phân tích thành thừa số
\left(x-y\right)\left(x+y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)
Chia sẻ
Đã sao chép vào bảng tạm
x^{6}-\left(y^{2}\right)^{3}
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 3 để có kết quả 6.
x^{6}-y^{6}
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 3 để có kết quả 6.
\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right)
Viết lại x^{6}-y^{6} dưới dạng \left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}. Có thể phân tích hiệu các bình phương thành thừa số bằng quy tắc: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Xét x^{3}-y^{3}. Có thể phân tích hiệu của lũy thừa bậc ba thành thừa số bằng quy tắc: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+y\right)\left(x^{2}-xy+y^{2}\right)
Xét x^{3}+y^{3}. Có thể phân tích tổng của lũy thừa bậc ba thành thừa số bằng quy tắc: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-y\right)\left(x+y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)
Viết lại biểu thức đã được phân tích hết thành thừa số.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}