Tìm x
x=1
x=-7
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x^{2}+6x+9=16
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Trừ 16 khỏi cả hai vế.
x^{2}+6x-7=0
Lấy 9 trừ 16 để có được -7.
a+b=6 ab=-7
Để giải phương trình, phân tích x^{2}+6x-7 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=7
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(x-1\right)\left(x+7\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=1 x=-7
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và x+7=0.
x^{2}+6x+9=16
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Trừ 16 khỏi cả hai vế.
x^{2}+6x-7=0
Lấy 9 trừ 16 để có được -7.
a+b=6 ab=1\left(-7\right)=-7
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-7. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=7
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(x^{2}-x\right)+\left(7x-7\right)
Viết lại x^{2}+6x-7 dưới dạng \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
Phân tích x trong đầu tiên và 7 trong nhóm thứ hai.
\left(x-1\right)\left(x+7\right)
Phân tích số hạng chung x-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=1 x=-7
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và x+7=0.
x^{2}+6x+9=16
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Trừ 16 khỏi cả hai vế.
x^{2}+6x-7=0
Lấy 9 trừ 16 để có được -7.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 6 vào b và -7 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Bình phương 6.
x=\frac{-6±\sqrt{36+28}}{2}
Nhân -4 với -7.
x=\frac{-6±\sqrt{64}}{2}
Cộng 36 vào 28.
x=\frac{-6±8}{2}
Lấy căn bậc hai của 64.
x=\frac{2}{2}
Bây giờ, giải phương trình x=\frac{-6±8}{2} khi ± là số dương. Cộng -6 vào 8.
x=1
Chia 2 cho 2.
x=-\frac{14}{2}
Bây giờ, giải phương trình x=\frac{-6±8}{2} khi ± là số âm. Trừ 8 khỏi -6.
x=-7
Chia -14 cho 2.
x=1 x=-7
Hiện phương trình đã được giải.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
Lấy căn bậc hai của cả hai vế của phương trình.
x+3=4 x+3=-4
Rút gọn.
x=1 x=-7
Trừ 3 khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}