Tính giá trị
-\sqrt{3}-4\sqrt{2}\approx -7,388905057
Chia sẻ
Đã sao chép vào bảng tạm
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Bình phương của \sqrt{2} là 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Nhân 4 với 2 để có được 8.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Cộng 8 với 1 để có được 9.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Phân tích thành thừa số 12=2^{2}\times 3. Viết lại căn bậc hai của sản phẩm \sqrt{2^{2}\times 3} như là tích của gốc vuông \sqrt{2^{2}}\sqrt{3}. Lấy căn bậc hai của 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Hữu tỷ hóa mẫu số của \frac{2\sqrt{3}-3}{\sqrt{3}} bằng cách nhân tử số và mẫu số với \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Bình phương của \sqrt{3} là 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Nhân 9-4\sqrt{2} với \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Do \frac{3\left(9-4\sqrt{2}\right)}{3} và \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Thực hiện nhân trong 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Tính toán trong 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Chia từng số hạng trong 33-12\sqrt{2}-3\sqrt{3} cho 3, ta có 11-4\sqrt{2}-\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Sử dụng tính chất phân phối để nhân 2\sqrt{3}-1 với -2\sqrt{3}-1 và kết hợp các số hạng tương đương.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
Bình phương của \sqrt{3} là 3.
11-4\sqrt{2}-\sqrt{3}-12+1
Nhân -4 với 3 để có được -12.
11-4\sqrt{2}-\sqrt{3}-11
Cộng -12 với 1 để có được -11.
-4\sqrt{2}-\sqrt{3}
Lấy 11 trừ 11 để có được 0.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}