Tìm A
A=I\lambda
Tìm I
\left\{\begin{matrix}I=\frac{A}{\lambda }\text{, }&\lambda \neq 0\\I\in \mathrm{R}\text{, }&A=0\text{ and }\lambda =0\end{matrix}\right,
Chia sẻ
Đã sao chép vào bảng tạm
-A=-\lambda I
Trừ \lambda I khỏi cả hai vế. Số không trừ đi bất kỳ giá trị nào cũng bằng số âm của giá trị đó.
A=\lambda I
Giản ước -1 ở cả hai vế.
\lambda I=A
Thêm A vào cả hai vế. Bất kỳ giá trị nào cộng với không cũng bằng chính nó.
\frac{\lambda I}{\lambda }=\frac{A}{\lambda }
Chia cả hai vế cho \lambda .
I=\frac{A}{\lambda }
Việc chia cho \lambda sẽ làm mất phép nhân với \lambda .
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}