Tính giá trị
x^{2}
Khai triển
x^{2}
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Xét \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Bình phương 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Khai triển \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Tính \frac{1}{2} mũ 2 và ta có \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Kết hợp \frac{1}{4}x^{2} và \frac{1}{4}x^{2} để có được \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Lấy 1 trừ 1 để có được 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Xét \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Bình phương 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Khai triển \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Tính -\frac{1}{2} mũ 2 và ta có \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Kết hợp \frac{1}{2}x^{2} và \frac{1}{4}x^{2} để có được \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Kết hợp \frac{3}{4}x^{2} và \frac{1}{4}x^{2} để có được x^{2}.
x^{2}+1-1
Kết hợp -x và x để có được 0.
x^{2}
Lấy 1 trừ 1 để có được 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Xét \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Bình phương 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Khai triển \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Tính \frac{1}{2} mũ 2 và ta có \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Kết hợp \frac{1}{4}x^{2} và \frac{1}{4}x^{2} để có được \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Lấy 1 trừ 1 để có được 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Xét \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Bình phương 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Khai triển \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Tính -\frac{1}{2} mũ 2 và ta có \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Kết hợp \frac{1}{2}x^{2} và \frac{1}{4}x^{2} để có được \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Kết hợp \frac{3}{4}x^{2} và \frac{1}{4}x^{2} để có được x^{2}.
x^{2}+1-1
Kết hợp -x và x để có được 0.
x^{2}
Lấy 1 trừ 1 để có được 0.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}