Tìm x (complex solution)
x\in \sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}},\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}},\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Đồ thị
Bài kiểm tra
Quadratic Equation
5 bài toán tương tự với:
{ x }^{ 6 } =((6 { x }^{ 3 } )- { 5 }^{ 3 } )
Chia sẻ
Đã sao chép vào bảng tạm
x^{6}=6x^{3}-125
Tính 5 mũ 3 và ta có 125.
x^{6}-6x^{3}=-125
Trừ 6x^{3} khỏi cả hai vế.
x^{6}-6x^{3}+125=0
Thêm 125 vào cả hai vế.
t^{2}-6t+125=0
Thay x^{3} vào t.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
Có thể giải mọi phương trình của biểu mẫu ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Thay 1 cho a, -6 cho b và 125 cho c trong công thức bậc hai.
t=\frac{6±\sqrt{-464}}{2}
Thực hiện phép tính.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
Giải phương trình t=\frac{6±\sqrt{-464}}{2} khi ± là cộng và khi ± là trừ.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Do x=t^{3}, ta có được đáp án bằng cách giải phương trình cho từng t.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}