Phân tích thành thừa số
\left(x^{2}-20\right)\left(x^{2}+12\right)
Tính giá trị
\left(x^{2}-20\right)\left(x^{2}+12\right)
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
\left(x^{2}-20\right)\left(x^{2}+12\right)
Tìm một thừa số của biểu mẫu x^{k}+m, vị trí x^{k} chia monomial với sức mạnh cao nhất x^{4} và m chia yếu tố hằng số -240. Một phân số như vậy là x^{2}-20. Phân tích đa thức bằng cách chia nó bằng thừa số này. Không phân tích được các đa thức sau thành thừa số vì chúng không có bất kỳ nghiệm hữu tỉ nào: x^{2}-20,x^{2}+12.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}