Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

a+b=-6 ab=-27
Để giải phương trình, phân tích x^{2}-6x-27 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-27 3,-9
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -27.
1-27=-26 3-9=-6
Tính tổng của mỗi cặp.
a=-9 b=3
Nghiệm là cặp có tổng bằng -6.
\left(x-9\right)\left(x+3\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=9 x=-3
Để tìm các giải pháp phương trình, hãy giải quyết x-9=0 và x+3=0.
a+b=-6 ab=1\left(-27\right)=-27
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-27. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-27 3,-9
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -27.
1-27=-26 3-9=-6
Tính tổng của mỗi cặp.
a=-9 b=3
Nghiệm là cặp có tổng bằng -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Viết lại x^{2}-6x-27 dưới dạng \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
Phân tích x trong đầu tiên và 3 trong nhóm thứ hai.
\left(x-9\right)\left(x+3\right)
Phân tích số hạng chung x-9 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=9 x=-3
Để tìm các giải pháp phương trình, hãy giải quyết x-9=0 và x+3=0.
x^{2}-6x-27=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, -6 vào b và -27 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Bình phương -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Nhân -4 với -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Cộng 36 vào 108.
x=\frac{-\left(-6\right)±12}{2}
Lấy căn bậc hai của 144.
x=\frac{6±12}{2}
Số đối của số -6 là 6.
x=\frac{18}{2}
Bây giờ, giải phương trình x=\frac{6±12}{2} khi ± là số dương. Cộng 6 vào 12.
x=9
Chia 18 cho 2.
x=-\frac{6}{2}
Bây giờ, giải phương trình x=\frac{6±12}{2} khi ± là số âm. Trừ 12 khỏi 6.
x=-3
Chia -6 cho 2.
x=9 x=-3
Hiện phương trình đã được giải.
x^{2}-6x-27=0
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
x^{2}-6x-27-\left(-27\right)=-\left(-27\right)
Cộng 27 vào cả hai vế của phương trình.
x^{2}-6x=-\left(-27\right)
Trừ -27 cho chính nó ta có 0.
x^{2}-6x=27
Trừ -27 khỏi 0.
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
Chia -6, hệ số của số hạng x, cho 2 để có kết quả -3. Sau đó, cộng bình phương của -3 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-6x+9=27+9
Bình phương -3.
x^{2}-6x+9=36
Cộng 27 vào 9.
\left(x-3\right)^{2}=36
Phân tích x^{2}-6x+9 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
Lấy căn bậc hai của cả hai vế của phương trình.
x-3=6 x-3=-6
Rút gọn.
x=9 x=-3
Cộng 3 vào cả hai vế của phương trình.