Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

2x^{2}+1x+2x=5
Kết hợp x^{2} và x^{2} để có được 2x^{2}.
2x^{2}+3x=5
Kết hợp 1x và 2x để có được 3x.
2x^{2}+3x-5=0
Trừ 5 khỏi cả hai vế.
a+b=3 ab=2\left(-5\right)=-10
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là 2x^{2}+ax+bx-5. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,10 -2,5
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -10.
-1+10=9 -2+5=3
Tính tổng của mỗi cặp.
a=-2 b=5
Nghiệm là cặp có tổng bằng 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Viết lại 2x^{2}+3x-5 dưới dạng \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Phân tích 2x trong đầu tiên và 5 trong nhóm thứ hai.
\left(x-1\right)\left(2x+5\right)
Phân tích số hạng chung x-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=1 x=-\frac{5}{2}
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và 2x+5=0.
2x^{2}+1x+2x=5
Kết hợp x^{2} và x^{2} để có được 2x^{2}.
2x^{2}+3x=5
Kết hợp 1x và 2x để có được 3x.
2x^{2}+3x-5=0
Trừ 5 khỏi cả hai vế.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 2 vào a, 3 vào b và -5 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Bình phương 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Nhân -4 với 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Nhân -8 với -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Cộng 9 vào 40.
x=\frac{-3±7}{2\times 2}
Lấy căn bậc hai của 49.
x=\frac{-3±7}{4}
Nhân 2 với 2.
x=\frac{4}{4}
Bây giờ, giải phương trình x=\frac{-3±7}{4} khi ± là số dương. Cộng -3 vào 7.
x=1
Chia 4 cho 4.
x=-\frac{10}{4}
Bây giờ, giải phương trình x=\frac{-3±7}{4} khi ± là số âm. Trừ 7 khỏi -3.
x=-\frac{5}{2}
Rút gọn phân số \frac{-10}{4} thành số hạng nhỏ nhất bằng cách tách thừa số và giản ước 2.
x=1 x=-\frac{5}{2}
Hiện phương trình đã được giải.
2x^{2}+1x+2x=5
Kết hợp x^{2} và x^{2} để có được 2x^{2}.
2x^{2}+3x=5
Kết hợp 1x và 2x để có được 3x.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Chia cả hai vế cho 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Việc chia cho 2 sẽ làm mất phép nhân với 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Chia \frac{3}{2}, hệ số của số hạng x, cho 2 để có kết quả \frac{3}{4}. Sau đó, cộng bình phương của \frac{3}{4} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Bình phương \frac{3}{4} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Cộng \frac{5}{2} với \frac{9}{16} bằng cách tìm một mẫu số chung, rồi cộng các tử số. Sau đó, rút gọn phân số đó thành số hạng nhỏ nhất, nếu có thể.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Phân tích x^{2}+\frac{3}{2}x+\frac{9}{16} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Rút gọn.
x=1 x=-\frac{5}{2}
Trừ \frac{3}{4} khỏi cả hai vế của phương trình.