Tìm f (complex solution)
f=e^{\frac{Im(x)arg(2x^{2}-4x+1)+iRe(x)arg(2x^{2}-4x+1)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|2x^{2}-4x+1|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Tìm f
\left\{\begin{matrix}f=\left(2x^{2}-4x+1\right)^{\frac{1}{x}}\text{, }&\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}>0\text{ and }x>\frac{\sqrt{2}}{2}+1\right)\text{ or }\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}>0\text{ and }x\neq 0\text{ and }x<-\frac{\sqrt{2}}{2}+1\right)\text{ or }\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}>0\text{ and }x\leq -\frac{\sqrt{2}}{2}+1\text{ and }x>0\right)\text{ or }x=\frac{\sqrt{2}}{2}+1\text{ or }x=-\frac{\sqrt{2}}{2}+1\text{ or }\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}<0\text{ and }x>\frac{\sqrt{2}}{2}+1\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(x\neq 0\text{ and }\left(2x^{2}-4x+1\right)^{\frac{1}{x}}<0\text{ and }x<-\frac{\sqrt{2}}{2}+1\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}<0\text{ and }x\leq -\frac{\sqrt{2}}{2}+1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>0\right)\text{ or }\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<\frac{\sqrt{2}}{2}+1\text{ and }x>-\frac{\sqrt{2}}{2}+1\right)\\f=-\left(2x^{2}-4x+1\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<\frac{\sqrt{2}}{2}+1\text{ and }x>-\frac{\sqrt{2}}{2}+1\right)\text{ or }\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>\frac{\sqrt{2}}{2}+1\right)\text{ or }\left(x\neq 0\text{ and }\left(2x^{2}-4x+1\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<-\frac{\sqrt{2}}{2}+1\right)\text{ or }\left(x\leq -\frac{\sqrt{2}}{2}+1\text{ and }\left(2x^{2}-4x+1\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>0\right)\text{ or }\left(x\leq -\frac{\sqrt{2}}{2}+1\text{ and }\left(2x^{2}-4x+1\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }x>0\right)\text{ or }\left(x\neq 0\text{ and }\left(2x^{2}-4x+1\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }x<-\frac{\sqrt{2}}{2}+1\right)\text{ or }\left(\left(2x^{2}-4x+1\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }x>\frac{\sqrt{2}}{2}+1\right)\\f\neq 0\text{, }&x=0\end{matrix}\right,
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}