Tìm x
x=\frac{10}{17}\approx 0,588235294
x=3
Đồ thị
Bài kiểm tra
Polynomial
5 bài toán tương tự với:
{ \left(x-3 \right) }^{ 2 } { \left(10-17x \right) }^{ 2 } = 0
Chia sẻ
Đã sao chép vào bảng tạm
\left(x^{2}-6x+9\right)\left(10-17x\right)^{2}=0
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x-3\right)^{2}.
\left(x^{2}-6x+9\right)\left(100-340x+289x^{2}\right)=0
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(10-17x\right)^{2}.
4741x^{2}-2074x^{3}+289x^{4}-3660x+900=0
Sử dụng tính chất phân phối để nhân x^{2}-6x+9 với 100-340x+289x^{2} và kết hợp các số hạng tương đương.
289x^{4}-2074x^{3}+4741x^{2}-3660x+900=0
Sắp xếp lại phương trình để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
±\frac{900}{289},±\frac{900}{17},±900,±\frac{450}{289},±\frac{450}{17},±450,±\frac{300}{289},±\frac{300}{17},±300,±\frac{225}{289},±\frac{225}{17},±225,±\frac{180}{289},±\frac{180}{17},±180,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{90}{289},±\frac{90}{17},±90,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{45}{289},±\frac{45}{17},±45,±\frac{36}{289},±\frac{36}{17},±36,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{18}{289},±\frac{18}{17},±18,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{9}{289},±\frac{9}{17},±9,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi 900 chia hết cho p và hệ số của số hạng cao nhất 289 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=3
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
289x^{3}-1207x^{2}+1120x-300=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia 289x^{4}-2074x^{3}+4741x^{2}-3660x+900 cho x-3 ta có 289x^{3}-1207x^{2}+1120x-300. Giải phương trình khi kết quả bằng 0.
±\frac{300}{289},±\frac{300}{17},±300,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Theo Định lý nghiệm hữu tỉ, mọi nghiệm hữu tỉ của một đa thức đều có dạng \frac{p}{q}, trong đó số hạng không đổi -300 chia hết cho p và hệ số của số hạng cao nhất 289 chia hết cho q. Liệt kê tất cả các phần tử \frac{p}{q}.
x=3
Tìm một nghiệm như vậy bằng cách thử tất cả giá trị số nguyên, bắt đầu từ giá trị nhỏ nhất theo giá trị tuyệt đối. Nếu không tìm thấy nghiệm số nguyên, hãy thử phân số.
289x^{2}-340x+100=0
Theo Định lý thừa số, x-k là thừa số của đa thức với mỗi nghiệm k. Chia 289x^{3}-1207x^{2}+1120x-300 cho x-3 ta có 289x^{2}-340x+100. Giải phương trình khi kết quả bằng 0.
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 289\times 100}}{2\times 289}
Có thể giải mọi phương trình của biểu mẫu ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Thay 289 cho a, -340 cho b và 100 cho c trong công thức bậc hai.
x=\frac{340±0}{578}
Thực hiện phép tính.
x=\frac{10}{17}
Nghiệm là như nhau.
x=3 x=\frac{10}{17}
Liệt kê tất cả đáp án tìm được.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}