Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

x^{2}+2x+1=4
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Trừ 4 khỏi cả hai vế.
x^{2}+2x-3=0
Lấy 1 trừ 4 để có được -3.
a+b=2 ab=-3
Để giải phương trình, phân tích x^{2}+2x-3 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=3
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(x-1\right)\left(x+3\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=1 x=-3
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và x+3=0.
x^{2}+2x+1=4
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Trừ 4 khỏi cả hai vế.
x^{2}+2x-3=0
Lấy 1 trừ 4 để có được -3.
a+b=2 ab=1\left(-3\right)=-3
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-3. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=-1 b=3
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(x^{2}-x\right)+\left(3x-3\right)
Viết lại x^{2}+2x-3 dưới dạng \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Phân tích x trong đầu tiên và 3 trong nhóm thứ hai.
\left(x-1\right)\left(x+3\right)
Phân tích số hạng chung x-1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=1 x=-3
Để tìm các giải pháp phương trình, hãy giải quyết x-1=0 và x+3=0.
x^{2}+2x+1=4
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Trừ 4 khỏi cả hai vế.
x^{2}+2x-3=0
Lấy 1 trừ 4 để có được -3.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 2 vào b và -3 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Bình phương 2.
x=\frac{-2±\sqrt{4+12}}{2}
Nhân -4 với -3.
x=\frac{-2±\sqrt{16}}{2}
Cộng 4 vào 12.
x=\frac{-2±4}{2}
Lấy căn bậc hai của 16.
x=\frac{2}{2}
Bây giờ, giải phương trình x=\frac{-2±4}{2} khi ± là số dương. Cộng -2 vào 4.
x=1
Chia 2 cho 2.
x=-\frac{6}{2}
Bây giờ, giải phương trình x=\frac{-2±4}{2} khi ± là số âm. Trừ 4 khỏi -2.
x=-3
Chia -6 cho 2.
x=1 x=-3
Hiện phương trình đã được giải.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Lấy căn bậc hai của cả hai vế của phương trình.
x+1=2 x+1=-2
Rút gọn.
x=1 x=-3
Trừ 1 khỏi cả hai vế của phương trình.