Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\left(\sqrt{x^{2}-1}\right)^{2}=\left(x+2\right)^{2}
Bình phương cả hai vế của phương trình.
x^{2}-1=\left(x+2\right)^{2}
Tính \sqrt{x^{2}-1} mũ 2 và ta có x^{2}-1.
x^{2}-1=x^{2}+4x+4
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+2\right)^{2}.
x^{2}-1-x^{2}=4x+4
Trừ x^{2} khỏi cả hai vế.
-1=4x+4
Kết hợp x^{2} và -x^{2} để có được 0.
4x+4=-1
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
4x=-1-4
Trừ 4 khỏi cả hai vế.
4x=-5
Lấy -1 trừ 4 để có được -5.
x=\frac{-5}{4}
Chia cả hai vế cho 4.
x=-\frac{5}{4}
Có thể viết lại phân số \frac{-5}{4} dưới dạng -\frac{5}{4} bằng cách tách dấu âm.
\sqrt{\left(-\frac{5}{4}\right)^{2}-1}=-\frac{5}{4}+2
Thay x bằng -\frac{5}{4} trong phương trình \sqrt{x^{2}-1}=x+2.
\frac{3}{4}=\frac{3}{4}
Rút gọn. Giá trị x=-\frac{5}{4} thỏa mãn phương trình.
x=-\frac{5}{4}
Phương trình \sqrt{x^{2}-1}=x+2 có một nghiệm duy nhất.