Tìm x
x=1
Đồ thị
Bài kiểm tra
Algebra
\sqrt { 5 - x } = x + 1
Chia sẻ
Đã sao chép vào bảng tạm
\left(\sqrt{5-x}\right)^{2}=\left(x+1\right)^{2}
Bình phương cả hai vế của phương trình.
5-x=\left(x+1\right)^{2}
Tính \sqrt{5-x} mũ 2 và ta có 5-x.
5-x=x^{2}+2x+1
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+1\right)^{2}.
5-x-x^{2}=2x+1
Trừ x^{2} khỏi cả hai vế.
5-x-x^{2}-2x=1
Trừ 2x khỏi cả hai vế.
5-3x-x^{2}=1
Kết hợp -x và -2x để có được -3x.
5-3x-x^{2}-1=0
Trừ 1 khỏi cả hai vế.
4-3x-x^{2}=0
Lấy 5 trừ 1 để có được 4.
-x^{2}-3x+4=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=-3 ab=-4=-4
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là -x^{2}+ax+bx+4. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-4 2,-2
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -4.
1-4=-3 2-2=0
Tính tổng của mỗi cặp.
a=1 b=-4
Nghiệm là cặp có tổng bằng -3.
\left(-x^{2}+x\right)+\left(-4x+4\right)
Viết lại -x^{2}-3x+4 dưới dạng \left(-x^{2}+x\right)+\left(-4x+4\right).
x\left(-x+1\right)+4\left(-x+1\right)
Phân tích x trong đầu tiên và 4 trong nhóm thứ hai.
\left(-x+1\right)\left(x+4\right)
Phân tích số hạng chung -x+1 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=1 x=-4
Để tìm các giải pháp phương trình, hãy giải quyết -x+1=0 và x+4=0.
\sqrt{5-1}=1+1
Thay x bằng 1 trong phương trình \sqrt{5-x}=x+1.
2=2
Rút gọn. Giá trị x=1 thỏa mãn phương trình.
\sqrt{5-\left(-4\right)}=-4+1
Thay x bằng -4 trong phương trình \sqrt{5-x}=x+1.
3=-3
Rút gọn. Giá trị x=-4 không thỏa mãn phương trình vì biểu thức bên trái và bên phải trái dấu.
x=1
Phương trình \sqrt{5-x}=x+1 có một nghiệm duy nhất.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}