Tính giá trị
58-37a
Lấy vi phân theo a
-37
Chia sẻ
Đã sao chép vào bảng tạm
42+\sqrt{256}-\sqrt{1369}a
Tính căn bậc hai của 1764 và được kết quả 42.
42+16-\sqrt{1369}a
Tính căn bậc hai của 256 và được kết quả 16.
58-\sqrt{1369}a
Cộng 42 với 16 để có được 58.
58-37a
Tính căn bậc hai của 1369 và được kết quả 37.
\frac{\mathrm{d}}{\mathrm{d}a}(42+\sqrt{256}-\sqrt{1369}a)
Tính căn bậc hai của 1764 và được kết quả 42.
\frac{\mathrm{d}}{\mathrm{d}a}(42+16-\sqrt{1369}a)
Tính căn bậc hai của 256 và được kết quả 16.
\frac{\mathrm{d}}{\mathrm{d}a}(58-\sqrt{1369}a)
Cộng 42 với 16 để có được 58.
\frac{\mathrm{d}}{\mathrm{d}a}(58-37a)
Tính căn bậc hai của 1369 và được kết quả 37.
-37a^{1-1}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
-37a^{0}
Trừ 1 khỏi 1.
-37
Với mọi số hạng t trừ 0, t^{0}=1.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}