Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

x^{2}-8+2x=0
Thêm 2x vào cả hai vế.
x^{2}+2x-8=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=2 ab=-8
Để giải phương trình, phân tích x^{2}+2x-8 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,8 -2,4
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -8.
-1+8=7 -2+4=2
Tính tổng của mỗi cặp.
a=-2 b=4
Nghiệm là cặp có tổng bằng 2.
\left(x-2\right)\left(x+4\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=2 x=-4
Để tìm các giải pháp phương trình, hãy giải quyết x-2=0 và x+4=0.
x^{2}-8+2x=0
Thêm 2x vào cả hai vế.
x^{2}+2x-8=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=2 ab=1\left(-8\right)=-8
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-8. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
-1,8 -2,4
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Liệt kê tất cả cặp số nguyên có tích bằng -8.
-1+8=7 -2+4=2
Tính tổng của mỗi cặp.
a=-2 b=4
Nghiệm là cặp có tổng bằng 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
Viết lại x^{2}+2x-8 dưới dạng \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
Phân tích x trong đầu tiên và 4 trong nhóm thứ hai.
\left(x-2\right)\left(x+4\right)
Phân tích số hạng chung x-2 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=2 x=-4
Để tìm các giải pháp phương trình, hãy giải quyết x-2=0 và x+4=0.
x^{2}-8+2x=0
Thêm 2x vào cả hai vế.
x^{2}+2x-8=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 2 vào b và -8 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Bình phương 2.
x=\frac{-2±\sqrt{4+32}}{2}
Nhân -4 với -8.
x=\frac{-2±\sqrt{36}}{2}
Cộng 4 vào 32.
x=\frac{-2±6}{2}
Lấy căn bậc hai của 36.
x=\frac{4}{2}
Bây giờ, giải phương trình x=\frac{-2±6}{2} khi ± là số dương. Cộng -2 vào 6.
x=2
Chia 4 cho 2.
x=-\frac{8}{2}
Bây giờ, giải phương trình x=\frac{-2±6}{2} khi ± là số âm. Trừ 6 khỏi -2.
x=-4
Chia -8 cho 2.
x=2 x=-4
Hiện phương trình đã được giải.
x^{2}-8+2x=0
Thêm 2x vào cả hai vế.
x^{2}+2x=8
Thêm 8 vào cả hai vế. Bất kỳ giá trị nào cộng với không cũng bằng chính nó.
x^{2}+2x+1^{2}=8+1^{2}
Chia 2, hệ số của số hạng x, cho 2 để có kết quả 1. Sau đó, cộng bình phương của 1 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+2x+1=8+1
Bình phương 1.
x^{2}+2x+1=9
Cộng 8 vào 1.
\left(x+1\right)^{2}=9
Phân tích x^{2}+2x+1 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Lấy căn bậc hai của cả hai vế của phương trình.
x+1=3 x+1=-3
Rút gọn.
x=2 x=-4
Trừ 1 khỏi cả hai vế của phương trình.