\left| \begin{array} { l l l } { i } & { j } & { k } \\ { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \end{array} \right|
Tính giá trị
6j-3k-3i
Chia sẻ
Đã sao chép vào bảng tạm
det(\left(\begin{matrix}i&j&k\\1&2&3\\4&5&6\end{matrix}\right))
Tìm định thức của ma trận bằng cách sử dụng phương pháp đường chéo.
\left(\begin{matrix}i&j&k&i&j\\1&2&3&1&2\\4&5&6&4&5\end{matrix}\right)
Khai triển ma trận gốc bằng cách lặp lại hai cột đầu tiên làm cột thứ tư và thứ năm.
2i\times 6+j\times 3\times 4+k\times 5=12j+5k+12i
Bắt đầu từ giá trị bên trái phía trên, nhân xuống theo đường chéo, rồi cộng các kết quả tích với nhau.
4\times 2k+5\times \left(3i\right)+6j=6j+8k+15i
Bắt đầu từ phần tử dưới cùng bên trái, nhân dọc lên theo các đường chéo, rồi cộng các kết quả tích.
12j+5k+12i-\left(6j+8k+15i\right)
Lấy tổng của tích đường chéo hướng xuống trừ tổng của các tích đường chéo lên.
6j-3k-3i
Trừ 8k+15i+6j khỏi 12i+12j+5k.
det(\left(\begin{matrix}i&j&k\\1&2&3\\4&5&6\end{matrix}\right))
Tìm định thức của ma trận bằng cách sử dụng các phương pháp khai triển các định thức con (còn được gọi là khai triển các hệ số kép).
idet(\left(\begin{matrix}2&3\\5&6\end{matrix}\right))-jdet(\left(\begin{matrix}1&3\\4&6\end{matrix}\right))+kdet(\left(\begin{matrix}1&2\\4&5\end{matrix}\right))
Để khai triển định thức con, hãy nhân từng số hạng của dòng đầu tiên với định thức con của dòng đó, chính là định thức của ma trận 2\times 2 được tạo bằng cách gạch đi hàng và cột có chứa số hạng đó, rồi nhân với dấu dương của số hạng.
i\left(2\times 6-5\times 3\right)-j\left(6-4\times 3\right)+k\left(5-4\times 2\right)
Đối với ma 2\times 2 của \left(\begin{matrix}a&b\\c&d\end{matrix}\right), định thức là ad-bc.
-3i-j\left(-6\right)+k\left(-3\right)
Rút gọn.
6j-3k-3i
Thêm các số hạng để có được kết quả cuối cùng.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}