Chuyển đến nội dung chính
Tính giá trị
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x-2\right)^{2}.
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
Sử dụng tính chất phân phối để nhân x với x^{2}-4x+4.
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Bình phương x^{3}-4x^{2}+4x.
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Tính giá trị tích phân xác định trước.
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Tích hợp tổng số hạng.
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Phân tích thành thừa số hằng số trong từng số hạng.
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{6}\mathrm{d}x bằng \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{5}\mathrm{d}x bằng \frac{x^{6}}{6}. Nhân -8 với \frac{x^{6}}{6}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{4}\mathrm{d}x bằng \frac{x^{5}}{5}. Nhân 24 với \frac{x^{5}}{5}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{3}\mathrm{d}x bằng \frac{x^{4}}{4}. Nhân -32 với \frac{x^{4}}{4}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{2}\mathrm{d}x bằng \frac{x^{3}}{3}. Nhân 16 với \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
Rút gọn.
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
Tích phân xác định là nguyên hàm đa thức được đánh giá tại cận trên của tích phân trừ nguyên hàm được đánh giá tại cận dưới của tích phân.
\frac{128}{105}
Rút gọn.