Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Lấy vi phân theo x
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
Sử dụng định lý nhị thức \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} để bung rộng \left(x+5\right)^{3}.
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
Sử dụng tính chất phân phối để nhân x với x^{3}+15x^{2}+75x+125.
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
Tích hợp tổng số hạng.
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Phân tích thành thừa số hằng số trong từng số hạng.
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{4}\mathrm{d}x bằng \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{3}\mathrm{d}x bằng \frac{x^{4}}{4}. Nhân 15 với \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{2}\mathrm{d}x bằng \frac{x^{3}}{3}. Nhân 75 với \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x\mathrm{d}x bằng \frac{x^{2}}{2}. Nhân 125 với \frac{x^{2}}{2}.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
Rút gọn.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
Nếu F\left(x\right) là nguyên hàm của f\left(x\right) thì tập hợp mọi nguyên hàm của f\left(x\right) sẽ được tính bằng F\left(x\right)+C. Vì vậy, hãy thêm hằng số tích phân C\in \mathrm{R} vào kết quả.