Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Lấy vi phân theo γ
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\int \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\mathrm{d}\theta
Tính giá trị tích phân xác định trước.
\int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\theta
Tìm tích phân \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r sử dụng bảng của quy tắc Integrals thông thường \int a\mathrm{d}\theta =a\theta .
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \theta }{4}
Rút gọn.
\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 2\pi -\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 0
Tích phân xác định là nguyên hàm đa thức được đánh giá tại cận trên của tích phân trừ nguyên hàm được đánh giá tại cận dưới của tích phân.
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \pi }{2}
Rút gọn.