Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Lấy vi phân theo x
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\int 3x^{3}\left(\left(x^{5}\right)^{2}+14x^{5}+49\right)\mathrm{d}x
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x^{5}+7\right)^{2}.
\int 3x^{3}\left(x^{10}+14x^{5}+49\right)\mathrm{d}x
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 5 với 2 để có kết quả 10.
\int 3x^{13}+42x^{8}+147x^{3}\mathrm{d}x
Sử dụng tính chất phân phối để nhân 3x^{3} với x^{10}+14x^{5}+49.
\int 3x^{13}\mathrm{d}x+\int 42x^{8}\mathrm{d}x+\int 147x^{3}\mathrm{d}x
Tích hợp tổng số hạng.
3\int x^{13}\mathrm{d}x+42\int x^{8}\mathrm{d}x+147\int x^{3}\mathrm{d}x
Phân tích thành thừa số hằng số trong từng số hạng.
\frac{3x^{14}}{14}+42\int x^{8}\mathrm{d}x+147\int x^{3}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{13}\mathrm{d}x bằng \frac{x^{14}}{14}. Nhân 3 với \frac{x^{14}}{14}.
\frac{3x^{14}}{14}+\frac{14x^{9}}{3}+147\int x^{3}\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{8}\mathrm{d}x bằng \frac{x^{9}}{9}. Nhân 42 với \frac{x^{9}}{9}.
\frac{3x^{14}}{14}+\frac{14x^{9}}{3}+\frac{147x^{4}}{4}
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{3}\mathrm{d}x bằng \frac{x^{4}}{4}. Nhân 147 với \frac{x^{4}}{4}.
\frac{3x^{14}}{14}+\frac{14x^{9}}{3}+\frac{147x^{4}}{4}+С
Nếu F\left(x\right) là nguyên hàm của f\left(x\right) thì tập hợp mọi nguyên hàm của f\left(x\right) sẽ được tính bằng F\left(x\right)+C. Vì vậy, hãy thêm hằng số tích phân C\in \mathrm{R} vào kết quả.