Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Lấy vi phân theo x
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Sử dụng định lý nhị thức \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} để bung rộng \left(x^{2}+2\right)^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 3 để có kết quả 6.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Tích hợp tổng số hạng.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Phân tích thành thừa số hằng số trong từng số hạng.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{6}\mathrm{d}x bằng \frac{x^{7}}{7}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{4}\mathrm{d}x bằng \frac{x^{5}}{5}. Nhân 6 với \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Vì \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, thay thế \int x^{2}\mathrm{d}x bằng \frac{x^{3}}{3}. Nhân 12 với \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Tìm tích phân 8 sử dụng bảng của quy tắc Integrals thông thường \int a\mathrm{d}x=ax.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Rút gọn.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
Nếu F\left(x\right) là nguyên hàm của f\left(x\right) thì tập hợp mọi nguyên hàm của f\left(x\right) sẽ được tính bằng F\left(x\right)+C. Vì vậy, hãy thêm hằng số tích phân C\in \mathrm{R} vào kết quả.