Tìm x
x=2
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
\frac{2}{3}\left(\frac{3}{2}x+\frac{3}{2}\left(-1\right)-3\right)=2x-5
Sử dụng tính chất phân phối để nhân \frac{3}{2} với x-1.
\frac{2}{3}\left(\frac{3}{2}x-\frac{3}{2}-3\right)=2x-5
Nhân \frac{3}{2} với -1 để có được -\frac{3}{2}.
\frac{2}{3}\left(\frac{3}{2}x-\frac{3}{2}-\frac{6}{2}\right)=2x-5
Chuyển đổi 3 thành phân số \frac{6}{2}.
\frac{2}{3}\left(\frac{3}{2}x+\frac{-3-6}{2}\right)=2x-5
Do -\frac{3}{2} và \frac{6}{2} có cùng mẫu số, hãy trừ chúng bằng cách trừ các tử số cho nhau.
\frac{2}{3}\left(\frac{3}{2}x-\frac{9}{2}\right)=2x-5
Lấy -3 trừ 6 để có được -9.
\frac{2}{3}\times \frac{3}{2}x+\frac{2}{3}\left(-\frac{9}{2}\right)=2x-5
Sử dụng tính chất phân phối để nhân \frac{2}{3} với \frac{3}{2}x-\frac{9}{2}.
x+\frac{2}{3}\left(-\frac{9}{2}\right)=2x-5
Giản ước \frac{2}{3} và số nghịch đảo \frac{3}{2}.
x+\frac{2\left(-9\right)}{3\times 2}=2x-5
Nhân \frac{2}{3} với -\frac{9}{2} bằng cách nhân tử số với tử số và mẫu số với mẫu số.
x+\frac{-9}{3}=2x-5
Giản ước 2 ở cả tử số và mẫu số.
x-3=2x-5
Chia -9 cho 3 ta có -3.
x-3-2x=-5
Trừ 2x khỏi cả hai vế.
-x-3=-5
Kết hợp x và -2x để có được -x.
-x=-5+3
Thêm 3 vào cả hai vế.
-x=-2
Cộng -5 với 3 để có được -2.
x=2
Nhân cả hai vế với -1.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}