Chuyển đến nội dung chính
Tìm x (complex solution)
Tick mark Image
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Nhân x+1 với x+1 để có được \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Nhân x-1 với x-1 để có được \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Nhân x^{2}+1 với x^{2}+1 để có được \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng tính chất phân phối để nhân \frac{1}{4} với x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng tính chất phân phối để nhân \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} với x^{2}-2x+1 và kết hợp các số hạng tương đương.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Kết hợp -\frac{1}{2}x^{2} và x^{2} để có được \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Sử dụng tính chất phân phối để nhân \frac{1}{4} với x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Trừ \frac{1}{4}x^{4} khỏi cả hai vế.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Kết hợp \frac{1}{4}x^{4} và -\frac{1}{4}x^{4} để có được 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Trừ \frac{1}{2}x^{2} khỏi cả hai vế.
\frac{1}{4}=\frac{1}{4}
Kết hợp \frac{1}{2}x^{2} và -\frac{1}{2}x^{2} để có được 0.
\text{true}
So sánh \frac{1}{4} và \frac{1}{4}.
x\in \mathrm{C}
Điều này đúng với mọi x.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Nhân x+1 với x+1 để có được \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Nhân x-1 với x-1 để có được \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Nhân x^{2}+1 với x^{2}+1 để có được \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng tính chất phân phối để nhân \frac{1}{4} với x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Sử dụng tính chất phân phối để nhân \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} với x^{2}-2x+1 và kết hợp các số hạng tương đương.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Kết hợp -\frac{1}{2}x^{2} và x^{2} để có được \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Sử dụng tính chất phân phối để nhân \frac{1}{4} với x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Trừ \frac{1}{4}x^{4} khỏi cả hai vế.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Kết hợp \frac{1}{4}x^{4} và -\frac{1}{4}x^{4} để có được 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Trừ \frac{1}{2}x^{2} khỏi cả hai vế.
\frac{1}{4}=\frac{1}{4}
Kết hợp \frac{1}{2}x^{2} và -\frac{1}{2}x^{2} để có được 0.
\text{true}
So sánh \frac{1}{4} và \frac{1}{4}.
x\in \mathrm{R}
Điều này đúng với mọi x.