Tìm x
x=\sqrt{64319}\approx 253,611908238
x=-\sqrt{64319}\approx -253,611908238
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
15\left(253^{2}-x^{2}\right)=-30\times 155
Nhân \frac{1}{2} với 30 để có được 15.
15\left(64009-x^{2}\right)=-30\times 155
Tính 253 mũ 2 và ta có 64009.
960135-15x^{2}=-30\times 155
Sử dụng tính chất phân phối để nhân 15 với 64009-x^{2}.
960135-15x^{2}=-4650
Nhân -30 với 155 để có được -4650.
-15x^{2}=-4650-960135
Trừ 960135 khỏi cả hai vế.
-15x^{2}=-964785
Lấy -4650 trừ 960135 để có được -964785.
x^{2}=\frac{-964785}{-15}
Chia cả hai vế cho -15.
x^{2}=64319
Chia -964785 cho -15 ta có 64319.
x=\sqrt{64319} x=-\sqrt{64319}
Lấy căn bậc hai của cả hai vế phương trình.
15\left(253^{2}-x^{2}\right)=-30\times 155
Nhân \frac{1}{2} với 30 để có được 15.
15\left(64009-x^{2}\right)=-30\times 155
Tính 253 mũ 2 và ta có 64009.
960135-15x^{2}=-30\times 155
Sử dụng tính chất phân phối để nhân 15 với 64009-x^{2}.
960135-15x^{2}=-4650
Nhân -30 với 155 để có được -4650.
960135-15x^{2}+4650=0
Thêm 4650 vào cả hai vế.
964785-15x^{2}=0
Cộng 960135 với 4650 để có được 964785.
-15x^{2}+964785=0
Phương trình bậc hai có dạng này, với số hạng x^{2} nhưng không có số hạng x, vẫn có thể giải được bằng cách sử dụng công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, sau khi đã đưa phương trình về dạng chuẩn: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)\times 964785}}{2\left(-15\right)}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế -15 vào a, 0 vào b và 964785 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-15\right)\times 964785}}{2\left(-15\right)}
Bình phương 0.
x=\frac{0±\sqrt{60\times 964785}}{2\left(-15\right)}
Nhân -4 với -15.
x=\frac{0±\sqrt{57887100}}{2\left(-15\right)}
Nhân 60 với 964785.
x=\frac{0±30\sqrt{64319}}{2\left(-15\right)}
Lấy căn bậc hai của 57887100.
x=\frac{0±30\sqrt{64319}}{-30}
Nhân 2 với -15.
x=-\sqrt{64319}
Bây giờ, giải phương trình x=\frac{0±30\sqrt{64319}}{-30} khi ± là số dương.
x=\sqrt{64319}
Bây giờ, giải phương trình x=\frac{0±30\sqrt{64319}}{-30} khi ± là số âm.
x=-\sqrt{64319} x=\sqrt{64319}
Hiện phương trình đã được giải.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}