Tìm x
x\geq \frac{117}{16}
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
6\left(x-7\right)-5\left(3-2x\right)\geq 60
Nhân cả hai vế của phương trình với 30, bội số chung nhỏ nhất của 5,6. Vì 30 có giá trị dương nên chiều của bất đẳng thức không đổi.
6x-42-5\left(3-2x\right)\geq 60
Sử dụng tính chất phân phối để nhân 6 với x-7.
6x-42-15+10x\geq 60
Sử dụng tính chất phân phối để nhân -5 với 3-2x.
6x-57+10x\geq 60
Lấy -42 trừ 15 để có được -57.
16x-57\geq 60
Kết hợp 6x và 10x để có được 16x.
16x\geq 60+57
Thêm 57 vào cả hai vế.
16x\geq 117
Cộng 60 với 57 để có được 117.
x\geq \frac{117}{16}
Chia cả hai vế cho 16. Vì 16 có giá trị dương nên chiều của bất đẳng thức không đổi.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}