Tìm x
x=-1
x=6
Đồ thị
Bài kiểm tra
Quadratic Equation
5 bài toán tương tự với:
\frac { x - 1 } { x + 2 } = \frac { 10 } { 3 x - 2 }
Chia sẻ
Đã sao chép vào bảng tạm
\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
Biến x không thể bằng bất kỳ giá trị nào trong -2,\frac{2}{3} vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với \left(3x-2\right)\left(x+2\right), bội số chung nhỏ nhất của x+2,3x-2.
3x^{2}-5x+2=\left(x+2\right)\times 10
Sử dụng tính chất phân phối để nhân 3x-2 với x-1 và kết hợp các số hạng tương đương.
3x^{2}-5x+2=10x+20
Sử dụng tính chất phân phối để nhân x+2 với 10.
3x^{2}-5x+2-10x=20
Trừ 10x khỏi cả hai vế.
3x^{2}-15x+2=20
Kết hợp -5x và -10x để có được -15x.
3x^{2}-15x+2-20=0
Trừ 20 khỏi cả hai vế.
3x^{2}-15x-18=0
Lấy 2 trừ 20 để có được -18.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 3 vào a, -15 vào b và -18 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
Bình phương -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
Nhân -4 với 3.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
Nhân -12 với -18.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
Cộng 225 vào 216.
x=\frac{-\left(-15\right)±21}{2\times 3}
Lấy căn bậc hai của 441.
x=\frac{15±21}{2\times 3}
Số đối của số -15 là 15.
x=\frac{15±21}{6}
Nhân 2 với 3.
x=\frac{36}{6}
Bây giờ, giải phương trình x=\frac{15±21}{6} khi ± là số dương. Cộng 15 vào 21.
x=6
Chia 36 cho 6.
x=-\frac{6}{6}
Bây giờ, giải phương trình x=\frac{15±21}{6} khi ± là số âm. Trừ 21 khỏi 15.
x=-1
Chia -6 cho 6.
x=6 x=-1
Hiện phương trình đã được giải.
\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
Biến x không thể bằng bất kỳ giá trị nào trong -2,\frac{2}{3} vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với \left(3x-2\right)\left(x+2\right), bội số chung nhỏ nhất của x+2,3x-2.
3x^{2}-5x+2=\left(x+2\right)\times 10
Sử dụng tính chất phân phối để nhân 3x-2 với x-1 và kết hợp các số hạng tương đương.
3x^{2}-5x+2=10x+20
Sử dụng tính chất phân phối để nhân x+2 với 10.
3x^{2}-5x+2-10x=20
Trừ 10x khỏi cả hai vế.
3x^{2}-15x+2=20
Kết hợp -5x và -10x để có được -15x.
3x^{2}-15x=20-2
Trừ 2 khỏi cả hai vế.
3x^{2}-15x=18
Lấy 20 trừ 2 để có được 18.
\frac{3x^{2}-15x}{3}=\frac{18}{3}
Chia cả hai vế cho 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{18}{3}
Việc chia cho 3 sẽ làm mất phép nhân với 3.
x^{2}-5x=\frac{18}{3}
Chia -15 cho 3.
x^{2}-5x=6
Chia 18 cho 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Chia -5, hệ số của số hạng x, cho 2 để có kết quả -\frac{5}{2}. Sau đó, cộng bình phương của -\frac{5}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Bình phương -\frac{5}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Cộng 6 vào \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Phân tích x^{2}-5x+\frac{25}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Rút gọn.
x=6 x=-1
Cộng \frac{5}{2} vào cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}