Tìm x
x=-3
x=4
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x^{2}-x=\frac{2}{15}\times 90
Nhân cả hai vế với 90.
x^{2}-x=12
Nhân \frac{2}{15} với 90 để có được 12.
x^{2}-x-12=0
Trừ 12 khỏi cả hai vế.
a+b=-1 ab=-12
Để giải phương trình, phân tích x^{2}-x-12 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-12 2,-6 3,-4
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -12.
1-12=-11 2-6=-4 3-4=-1
Tính tổng của mỗi cặp.
a=-4 b=3
Nghiệm là cặp có tổng bằng -1.
\left(x-4\right)\left(x+3\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=4 x=-3
Để tìm các giải pháp phương trình, hãy giải quyết x-4=0 và x+3=0.
x^{2}-x=\frac{2}{15}\times 90
Nhân cả hai vế với 90.
x^{2}-x=12
Nhân \frac{2}{15} với 90 để có được 12.
x^{2}-x-12=0
Trừ 12 khỏi cả hai vế.
a+b=-1 ab=1\left(-12\right)=-12
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-12. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-12 2,-6 3,-4
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -12.
1-12=-11 2-6=-4 3-4=-1
Tính tổng của mỗi cặp.
a=-4 b=3
Nghiệm là cặp có tổng bằng -1.
\left(x^{2}-4x\right)+\left(3x-12\right)
Viết lại x^{2}-x-12 dưới dạng \left(x^{2}-4x\right)+\left(3x-12\right).
x\left(x-4\right)+3\left(x-4\right)
Phân tích x trong đầu tiên và 3 trong nhóm thứ hai.
\left(x-4\right)\left(x+3\right)
Phân tích số hạng chung x-4 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=4 x=-3
Để tìm các giải pháp phương trình, hãy giải quyết x-4=0 và x+3=0.
x^{2}-x=\frac{2}{15}\times 90
Nhân cả hai vế với 90.
x^{2}-x=12
Nhân \frac{2}{15} với 90 để có được 12.
x^{2}-x-12=0
Trừ 12 khỏi cả hai vế.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, -1 vào b và -12 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
Nhân -4 với -12.
x=\frac{-\left(-1\right)±\sqrt{49}}{2}
Cộng 1 vào 48.
x=\frac{-\left(-1\right)±7}{2}
Lấy căn bậc hai của 49.
x=\frac{1±7}{2}
Số đối của số -1 là 1.
x=\frac{8}{2}
Bây giờ, giải phương trình x=\frac{1±7}{2} khi ± là số dương. Cộng 1 vào 7.
x=4
Chia 8 cho 2.
x=-\frac{6}{2}
Bây giờ, giải phương trình x=\frac{1±7}{2} khi ± là số âm. Trừ 7 khỏi 1.
x=-3
Chia -6 cho 2.
x=4 x=-3
Hiện phương trình đã được giải.
x^{2}-x=\frac{2}{15}\times 90
Nhân cả hai vế với 90.
x^{2}-x=12
Nhân \frac{2}{15} với 90 để có được 12.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
Chia -1, hệ số của số hạng x, cho 2 để có kết quả -\frac{1}{2}. Sau đó, cộng bình phương của -\frac{1}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-x+\frac{1}{4}=12+\frac{1}{4}
Bình phương -\frac{1}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
x^{2}-x+\frac{1}{4}=\frac{49}{4}
Cộng 12 vào \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{49}{4}
Phân tích x^{2}-x+\frac{1}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x-\frac{1}{2}=\frac{7}{2} x-\frac{1}{2}=-\frac{7}{2}
Rút gọn.
x=4 x=-3
Cộng \frac{1}{2} vào cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}