Tìm x
x=-50
x=100
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
x^{2}=50\left(x+100\right)
Biến x không thể bằng -100 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x+100.
x^{2}=50x+5000
Sử dụng tính chất phân phối để nhân 50 với x+100.
x^{2}-50x=5000
Trừ 50x khỏi cả hai vế.
x^{2}-50x-5000=0
Trừ 5000 khỏi cả hai vế.
a+b=-50 ab=-5000
Để giải phương trình, phân tích x^{2}-50x-5000 thành thừa số bằng công thức x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -5000.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Tính tổng của mỗi cặp.
a=-100 b=50
Nghiệm là cặp có tổng bằng -50.
\left(x-100\right)\left(x+50\right)
Viết lại biểu thức đã được phân tích thành thừa số \left(x+a\right)\left(x+b\right) sử dụng các giá trị tìm được.
x=100 x=-50
Để tìm các giải pháp phương trình, hãy giải quyết x-100=0 và x+50=0.
x^{2}=50\left(x+100\right)
Biến x không thể bằng -100 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x+100.
x^{2}=50x+5000
Sử dụng tính chất phân phối để nhân 50 với x+100.
x^{2}-50x=5000
Trừ 50x khỏi cả hai vế.
x^{2}-50x-5000=0
Trừ 5000 khỏi cả hai vế.
a+b=-50 ab=1\left(-5000\right)=-5000
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là x^{2}+ax+bx-5000. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
Vì ab là âm, a và b có dấu đối diện. Vì a+b là âm, số âm có giá trị tuyệt đối lớn hơn so với Dương. Liệt kê tất cả cặp số nguyên có tích bằng -5000.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Tính tổng của mỗi cặp.
a=-100 b=50
Nghiệm là cặp có tổng bằng -50.
\left(x^{2}-100x\right)+\left(50x-5000\right)
Viết lại x^{2}-50x-5000 dưới dạng \left(x^{2}-100x\right)+\left(50x-5000\right).
x\left(x-100\right)+50\left(x-100\right)
Phân tích x trong đầu tiên và 50 trong nhóm thứ hai.
\left(x-100\right)\left(x+50\right)
Phân tích số hạng chung x-100 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=100 x=-50
Để tìm các giải pháp phương trình, hãy giải quyết x-100=0 và x+50=0.
x^{2}=50\left(x+100\right)
Biến x không thể bằng -100 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x+100.
x^{2}=50x+5000
Sử dụng tính chất phân phối để nhân 50 với x+100.
x^{2}-50x=5000
Trừ 50x khỏi cả hai vế.
x^{2}-50x-5000=0
Trừ 5000 khỏi cả hai vế.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-5000\right)}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, -50 vào b và -5000 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-5000\right)}}{2}
Bình phương -50.
x=\frac{-\left(-50\right)±\sqrt{2500+20000}}{2}
Nhân -4 với -5000.
x=\frac{-\left(-50\right)±\sqrt{22500}}{2}
Cộng 2500 vào 20000.
x=\frac{-\left(-50\right)±150}{2}
Lấy căn bậc hai của 22500.
x=\frac{50±150}{2}
Số đối của số -50 là 50.
x=\frac{200}{2}
Bây giờ, giải phương trình x=\frac{50±150}{2} khi ± là số dương. Cộng 50 vào 150.
x=100
Chia 200 cho 2.
x=-\frac{100}{2}
Bây giờ, giải phương trình x=\frac{50±150}{2} khi ± là số âm. Trừ 150 khỏi 50.
x=-50
Chia -100 cho 2.
x=100 x=-50
Hiện phương trình đã được giải.
x^{2}=50\left(x+100\right)
Biến x không thể bằng -100 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x+100.
x^{2}=50x+5000
Sử dụng tính chất phân phối để nhân 50 với x+100.
x^{2}-50x=5000
Trừ 50x khỏi cả hai vế.
x^{2}-50x+\left(-25\right)^{2}=5000+\left(-25\right)^{2}
Chia -50, hệ số của số hạng x, cho 2 để có kết quả -25. Sau đó, cộng bình phương của -25 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-50x+625=5000+625
Bình phương -25.
x^{2}-50x+625=5625
Cộng 5000 vào 625.
\left(x-25\right)^{2}=5625
Phân tích x^{2}-50x+625 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{5625}
Lấy căn bậc hai của cả hai vế của phương trình.
x-25=75 x-25=-75
Rút gọn.
x=100 x=-50
Cộng 25 vào cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}