Tìm x
x=-1
x=0
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Nhân cả hai vế của phương trình với 12, bội số chung nhỏ nhất của 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
Sử dụng tính chất phân phối để nhân 4 với x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
Cộng 8 với 7 để có được 15.
4x^{2}+15+x=12+3x^{2}+3
Sử dụng tính chất phân phối để nhân 3 với x^{2}+1.
4x^{2}+15+x=15+3x^{2}
Cộng 12 với 3 để có được 15.
4x^{2}+15+x-15=3x^{2}
Trừ 15 khỏi cả hai vế.
4x^{2}+x=3x^{2}
Lấy 15 trừ 15 để có được 0.
4x^{2}+x-3x^{2}=0
Trừ 3x^{2} khỏi cả hai vế.
x^{2}+x=0
Kết hợp 4x^{2} và -3x^{2} để có được x^{2}.
x\left(x+1\right)=0
Phân tích x thành thừa số.
x=0 x=-1
Để tìm các giải pháp phương trình, hãy giải quyết x=0 và x+1=0.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Nhân cả hai vế của phương trình với 12, bội số chung nhỏ nhất của 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
Sử dụng tính chất phân phối để nhân 4 với x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
Cộng 8 với 7 để có được 15.
4x^{2}+15+x=12+3x^{2}+3
Sử dụng tính chất phân phối để nhân 3 với x^{2}+1.
4x^{2}+15+x=15+3x^{2}
Cộng 12 với 3 để có được 15.
4x^{2}+15+x-15=3x^{2}
Trừ 15 khỏi cả hai vế.
4x^{2}+x=3x^{2}
Lấy 15 trừ 15 để có được 0.
4x^{2}+x-3x^{2}=0
Trừ 3x^{2} khỏi cả hai vế.
x^{2}+x=0
Kết hợp 4x^{2} và -3x^{2} để có được x^{2}.
x=\frac{-1±\sqrt{1^{2}}}{2}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế 1 vào a, 1 vào b và 0 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2}
Lấy căn bậc hai của 1^{2}.
x=\frac{0}{2}
Bây giờ, giải phương trình x=\frac{-1±1}{2} khi ± là số dương. Cộng -1 vào 1.
x=0
Chia 0 cho 2.
x=-\frac{2}{2}
Bây giờ, giải phương trình x=\frac{-1±1}{2} khi ± là số âm. Trừ 1 khỏi -1.
x=-1
Chia -2 cho 2.
x=0 x=-1
Hiện phương trình đã được giải.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Nhân cả hai vế của phương trình với 12, bội số chung nhỏ nhất của 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
Sử dụng tính chất phân phối để nhân 4 với x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
Cộng 8 với 7 để có được 15.
4x^{2}+15+x=12+3x^{2}+3
Sử dụng tính chất phân phối để nhân 3 với x^{2}+1.
4x^{2}+15+x=15+3x^{2}
Cộng 12 với 3 để có được 15.
4x^{2}+15+x-15=3x^{2}
Trừ 15 khỏi cả hai vế.
4x^{2}+x=3x^{2}
Lấy 15 trừ 15 để có được 0.
4x^{2}+x-3x^{2}=0
Trừ 3x^{2} khỏi cả hai vế.
x^{2}+x=0
Kết hợp 4x^{2} và -3x^{2} để có được x^{2}.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Chia 1, hệ số của số hạng x, cho 2 để có kết quả \frac{1}{2}. Sau đó, cộng bình phương của \frac{1}{2} vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Bình phương \frac{1}{2} bằng cách bình phương cả tử số và mẫu số của phân số.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
Phân tích x^{2}+x+\frac{1}{4} số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Lấy căn bậc hai của cả hai vế của phương trình.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Rút gọn.
x=0 x=-1
Trừ \frac{1}{2} khỏi cả hai vế của phương trình.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}