Tìm P_1 (complex solution)
\left\{\begin{matrix}P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}\text{, }&T_{2}\neq 0\text{ and }V_{1}\neq 0\text{ and }T_{1}\neq 0\\P_{1}\in \mathrm{C}\text{, }&\left(V_{2}=0\text{ or }P_{2}=0\right)\text{ and }V_{1}=0\text{ and }T_{2}\neq 0\text{ and }T_{1}\neq 0\end{matrix}\right,
Tìm P_2 (complex solution)
\left\{\begin{matrix}P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}\text{, }&T_{1}\neq 0\text{ and }V_{2}\neq 0\text{ and }T_{2}\neq 0\\P_{2}\in \mathrm{C}\text{, }&\left(V_{1}=0\text{ or }P_{1}=0\right)\text{ and }V_{2}=0\text{ and }T_{1}\neq 0\text{ and }T_{2}\neq 0\end{matrix}\right,
Tìm P_1
\left\{\begin{matrix}P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}\text{, }&T_{2}\neq 0\text{ and }V_{1}\neq 0\text{ and }T_{1}\neq 0\\P_{1}\in \mathrm{R}\text{, }&\left(V_{2}=0\text{ or }P_{2}=0\right)\text{ and }V_{1}=0\text{ and }T_{2}\neq 0\text{ and }T_{1}\neq 0\end{matrix}\right,
Tìm P_2
\left\{\begin{matrix}P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}\text{, }&T_{1}\neq 0\text{ and }V_{2}\neq 0\text{ and }T_{2}\neq 0\\P_{2}\in \mathrm{R}\text{, }&\left(V_{1}=0\text{ or }P_{1}=0\right)\text{ and }V_{2}=0\text{ and }T_{1}\neq 0\text{ and }T_{2}\neq 0\end{matrix}\right,
Chia sẻ
Đã sao chép vào bảng tạm
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
Nhân cả hai vế của phương trình với T_{1}T_{2}, bội số chung nhỏ nhất của T_{1},T_{2}.
P_{1}T_{2}V_{1}=P_{2}T_{1}V_{2}
Sắp xếp lại các số hạng.
T_{2}V_{1}P_{1}=P_{2}T_{1}V_{2}
Phương trình đang ở dạng chuẩn.
\frac{T_{2}V_{1}P_{1}}{T_{2}V_{1}}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
Chia cả hai vế cho T_{2}V_{1}.
P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
Việc chia cho T_{2}V_{1} sẽ làm mất phép nhân với T_{2}V_{1}.
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
Nhân cả hai vế của phương trình với T_{1}T_{2}, bội số chung nhỏ nhất của T_{1},T_{2}.
T_{1}P_{2}V_{2}=T_{2}P_{1}V_{1}
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
T_{1}V_{2}P_{2}=P_{1}T_{2}V_{1}
Phương trình đang ở dạng chuẩn.
\frac{T_{1}V_{2}P_{2}}{T_{1}V_{2}}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
Chia cả hai vế cho T_{1}V_{2}.
P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
Việc chia cho T_{1}V_{2} sẽ làm mất phép nhân với T_{1}V_{2}.
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
Nhân cả hai vế của phương trình với T_{1}T_{2}, bội số chung nhỏ nhất của T_{1},T_{2}.
P_{1}T_{2}V_{1}=P_{2}T_{1}V_{2}
Sắp xếp lại các số hạng.
T_{2}V_{1}P_{1}=P_{2}T_{1}V_{2}
Phương trình đang ở dạng chuẩn.
\frac{T_{2}V_{1}P_{1}}{T_{2}V_{1}}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
Chia cả hai vế cho T_{2}V_{1}.
P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
Việc chia cho T_{2}V_{1} sẽ làm mất phép nhân với T_{2}V_{1}.
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
Nhân cả hai vế của phương trình với T_{1}T_{2}, bội số chung nhỏ nhất của T_{1},T_{2}.
T_{1}P_{2}V_{2}=T_{2}P_{1}V_{1}
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
T_{1}V_{2}P_{2}=P_{1}T_{2}V_{1}
Phương trình đang ở dạng chuẩn.
\frac{T_{1}V_{2}P_{2}}{T_{1}V_{2}}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
Chia cả hai vế cho T_{1}V_{2}.
P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
Việc chia cho T_{1}V_{2} sẽ làm mất phép nhân với T_{1}V_{2}.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}