Chuyển đến nội dung chính
Tìm C
Tick mark Image
Tìm P
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

2Pn_{2}=3C\left(n+12\right)
Biến C không thể bằng 0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với 2C\left(n+12\right), bội số chung nhỏ nhất của C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
Sử dụng tính chất phân phối để nhân 3C với n+12.
3Cn+36C=2Pn_{2}
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
\left(3n+36\right)C=2Pn_{2}
Kết hợp tất cả các số hạng chứa C.
\frac{\left(3n+36\right)C}{3n+36}=\frac{2Pn_{2}}{3n+36}
Chia cả hai vế cho 3n+36.
C=\frac{2Pn_{2}}{3n+36}
Việc chia cho 3n+36 sẽ làm mất phép nhân với 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}
Chia 2Pn_{2} cho 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}\text{, }C\neq 0
Biến C không thể bằng 0.
2Pn_{2}=3C\left(n+12\right)
Nhân cả hai vế của phương trình với 2C\left(n+12\right), bội số chung nhỏ nhất của C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
Sử dụng tính chất phân phối để nhân 3C với n+12.
2n_{2}P=3Cn+36C
Phương trình đang ở dạng chuẩn.
\frac{2n_{2}P}{2n_{2}}=\frac{3C\left(n+12\right)}{2n_{2}}
Chia cả hai vế cho 2n_{2}.
P=\frac{3C\left(n+12\right)}{2n_{2}}
Việc chia cho 2n_{2} sẽ làm mất phép nhân với 2n_{2}.