Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Lấy vi phân theo n
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\frac{7\left(n-1\right)}{n\left(n-1\right)}+\frac{3n}{n\left(n-1\right)}
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Bội số chung nhỏ nhất của n và n-1 là n\left(n-1\right). Nhân \frac{7}{n} với \frac{n-1}{n-1}. Nhân \frac{3}{n-1} với \frac{n}{n}.
\frac{7\left(n-1\right)+3n}{n\left(n-1\right)}
Do \frac{7\left(n-1\right)}{n\left(n-1\right)} và \frac{3n}{n\left(n-1\right)} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
\frac{7n-7+3n}{n\left(n-1\right)}
Thực hiện nhân trong 7\left(n-1\right)+3n.
\frac{10n-7}{n\left(n-1\right)}
Kết hợp như các số hạng trong 7n-7+3n.
\frac{10n-7}{n^{2}-n}
Khai triển n\left(n-1\right).
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{7\left(n-1\right)}{n\left(n-1\right)}+\frac{3n}{n\left(n-1\right)})
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Bội số chung nhỏ nhất của n và n-1 là n\left(n-1\right). Nhân \frac{7}{n} với \frac{n-1}{n-1}. Nhân \frac{3}{n-1} với \frac{n}{n}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{7\left(n-1\right)+3n}{n\left(n-1\right)})
Do \frac{7\left(n-1\right)}{n\left(n-1\right)} và \frac{3n}{n\left(n-1\right)} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{7n-7+3n}{n\left(n-1\right)})
Thực hiện nhân trong 7\left(n-1\right)+3n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{10n-7}{n\left(n-1\right)})
Kết hợp như các số hạng trong 7n-7+3n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{10n-7}{n^{2}-n})
Sử dụng tính chất phân phối để nhân n với n-1.
\frac{\left(n^{2}-n^{1}\right)\frac{\mathrm{d}}{\mathrm{d}n}(10n^{1}-7)-\left(10n^{1}-7\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-n^{1})}{\left(n^{2}-n^{1}\right)^{2}}
Đối với hai hàm khả vi bất kỳ, đạo hàm của thương hai hàm bằng mẫu số nhân với đạo hàm của tử số trừ đi tử số nhân với đạo hàm của mẫu số, chia tất cả cho bình phương của mẫu số.
\frac{\left(n^{2}-n^{1}\right)\times 10n^{1-1}-\left(10n^{1}-7\right)\left(2n^{2-1}-n^{1-1}\right)}{\left(n^{2}-n^{1}\right)^{2}}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
\frac{\left(n^{2}-n^{1}\right)\times 10n^{0}-\left(10n^{1}-7\right)\left(2n^{1}-n^{0}\right)}{\left(n^{2}-n^{1}\right)^{2}}
Rút gọn.
\frac{n^{2}\times 10n^{0}-n^{1}\times 10n^{0}-\left(10n^{1}-7\right)\left(2n^{1}-n^{0}\right)}{\left(n^{2}-n^{1}\right)^{2}}
Nhân n^{2}-n^{1} với 10n^{0}.
\frac{n^{2}\times 10n^{0}-n^{1}\times 10n^{0}-\left(10n^{1}\times 2n^{1}+10n^{1}\left(-1\right)n^{0}-7\times 2n^{1}-7\left(-1\right)n^{0}\right)}{\left(n^{2}-n^{1}\right)^{2}}
Nhân 10n^{1}-7 với 2n^{1}-n^{0}.
\frac{10n^{2}-10n^{1}-\left(10\times 2n^{1+1}+10\left(-1\right)n^{1}-7\times 2n^{1}-7\left(-1\right)n^{0}\right)}{\left(n^{2}-n^{1}\right)^{2}}
Để nhân lũy thừa của cùng một cơ số, hãy cộng các số mũ với nhau.
\frac{10n^{2}-10n^{1}-\left(20n^{2}-10n^{1}-14n^{1}+7n^{0}\right)}{\left(n^{2}-n^{1}\right)^{2}}
Rút gọn.
\frac{-10n^{2}+14n^{1}-7n^{0}}{\left(n^{2}-n^{1}\right)^{2}}
Kết hợp giống như các số hạng.
\frac{-10n^{2}+14n-7n^{0}}{\left(n^{2}-n\right)^{2}}
Với mọi số hạng t, t^{1}=t.
\frac{-10n^{2}+14n-7}{\left(n^{2}-n\right)^{2}}
Với mọi số hạng t trừ 0, t^{0}=1.