Tìm x
x\in \left(2,4\right)
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
4-x<0 x-2<0
Để thương là số dương, 4-x và x-2 phải là cả âm hoặc đều Dương. Xét trường hợp 4-x và x-2 cùng là số âm.
x\in \emptyset
Điều này không đúng với mọi x.
x-2>0 4-x>0
Xét trường hợp khi 4-x và x-2 cùng dương.
x\in \left(2,4\right)
Nghiệm thỏa mãn cả hai bất đẳng thức là x\in \left(2,4\right).
x\in \left(2,4\right)
Nghiệm cuối cùng là kết hợp của các nghiệm thu được.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}