Tính giá trị
\frac{3\sqrt{3}}{4}-\frac{75}{8}\approx -8,075961894
Phân tích thành thừa số
\frac{3 {(2 \sqrt{3} - 25)}}{8} = -8,075961894323342
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\frac{36}{5}}{-\frac{6}{5}}+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Tính -\frac{5}{6} mũ -1 và ta có -\frac{6}{5}.
\frac{36}{5}\left(-\frac{5}{6}\right)+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Chia \frac{36}{5} cho -\frac{6}{5} bằng cách nhân \frac{36}{5} với nghịch đảo của -\frac{6}{5}.
-6+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Nhân \frac{36}{5} với -\frac{5}{6} để có được -6.
-6+\frac{\sqrt{27}}{\sqrt{16}}-\frac{1}{8}-\frac{13}{4}
Viết lại căn bậc hai của phân số \sqrt{\frac{27}{16}} làm phân số của gốc vuông \frac{\sqrt{27}}{\sqrt{16}}.
-6+\frac{3\sqrt{3}}{\sqrt{16}}-\frac{1}{8}-\frac{13}{4}
Phân tích thành thừa số 27=3^{2}\times 3. Viết lại căn bậc hai của sản phẩm \sqrt{3^{2}\times 3} như là tích của gốc vuông \sqrt{3^{2}}\sqrt{3}. Lấy căn bậc hai của 3^{2}.
-6+\frac{3\sqrt{3}}{4}-\frac{1}{8}-\frac{13}{4}
Tính căn bậc hai của 16 và được kết quả 4.
-\frac{49}{8}+\frac{3\sqrt{3}}{4}-\frac{13}{4}
Lấy -6 trừ \frac{1}{8} để có được -\frac{49}{8}.
-\frac{75}{8}+\frac{3\sqrt{3}}{4}
Lấy -\frac{49}{8} trừ \frac{13}{4} để có được -\frac{75}{8}.
-\frac{75}{8}+\frac{2\times 3\sqrt{3}}{8}
Để cộng hoặc trừ các biểu thức, khai triển các biểu thức để làm cho các mẫu số giống nhau. Bội số chung nhỏ nhất của 8 và 4 là 8. Nhân \frac{3\sqrt{3}}{4} với \frac{2}{2}.
\frac{-75+2\times 3\sqrt{3}}{8}
Do -\frac{75}{8} và \frac{2\times 3\sqrt{3}}{8} có cùng mẫu số, hãy cộng chúng bằng cách cộng các tử số với nhau.
\frac{-75+6\sqrt{3}}{8}
Thực hiện nhân trong -75+2\times 3\sqrt{3}.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}