Chuyển đến nội dung chính
Tìm x
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Biến x không thể bằng bất kỳ giá trị nào trong -2,0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x\left(x+2\right), bội số chung nhỏ nhất của x,x+2.
3x+6+x\times 5=2x\left(x+2\right)
Sử dụng tính chất phân phối để nhân x+2 với 3.
8x+6=2x\left(x+2\right)
Kết hợp 3x và x\times 5 để có được 8x.
8x+6=2x^{2}+4x
Sử dụng tính chất phân phối để nhân 2x với x+2.
8x+6-2x^{2}=4x
Trừ 2x^{2} khỏi cả hai vế.
8x+6-2x^{2}-4x=0
Trừ 4x khỏi cả hai vế.
4x+6-2x^{2}=0
Kết hợp 8x và -4x để có được 4x.
2x+3-x^{2}=0
Chia cả hai vế cho 2.
-x^{2}+2x+3=0
Sắp xếp lại đa thức để đưa về dạng chuẩn. Sắp xếp các số hạng theo thứ tự bậc từ cao nhất đến thấp nhất.
a+b=2 ab=-3=-3
Để giải phương trình, phân tích vế trái thành thừa số bằng cách nhóm. Trước tiên, vế trái cần được viết lại là -x^{2}+ax+bx+3. Để tìm a và b, hãy thiết lập hệ thống sẽ được giải.
a=3 b=-1
Vì ab là âm, a và b có dấu đối diện. Vì a+b là số dương, số dương có giá trị tuyệt đối lớn hơn số âm. Cặp duy nhất này là nghiệm của hệ.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Viết lại -x^{2}+2x+3 dưới dạng \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Phân tích -x trong đầu tiên và -1 trong nhóm thứ hai.
\left(x-3\right)\left(-x-1\right)
Phân tích số hạng chung x-3 thành thừa số bằng cách sử dụng thuộc tính phân phối.
x=3 x=-1
Để tìm các giải pháp phương trình, hãy giải quyết x-3=0 và -x-1=0.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Biến x không thể bằng bất kỳ giá trị nào trong -2,0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x\left(x+2\right), bội số chung nhỏ nhất của x,x+2.
3x+6+x\times 5=2x\left(x+2\right)
Sử dụng tính chất phân phối để nhân x+2 với 3.
8x+6=2x\left(x+2\right)
Kết hợp 3x và x\times 5 để có được 8x.
8x+6=2x^{2}+4x
Sử dụng tính chất phân phối để nhân 2x với x+2.
8x+6-2x^{2}=4x
Trừ 2x^{2} khỏi cả hai vế.
8x+6-2x^{2}-4x=0
Trừ 4x khỏi cả hai vế.
4x+6-2x^{2}=0
Kết hợp 8x và -4x để có được 4x.
-2x^{2}+4x+6=0
Có thể giải tất cả các phương trình dạng ax^{2}+bx+c=0 bằng cách sử dụng công thức bậc hai: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Công thức bậc hai cho ra hai nghiệm, một nghiệm khi ± mang dấu cộng và một nghiệm khi mang dấu trừ.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
Phương trình này ở dạng chuẩn: ax^{2}+bx+c=0. Thay thế -2 vào a, 4 vào b và 6 vào c trong công thức bậc hai, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 6}}{2\left(-2\right)}
Bình phương 4.
x=\frac{-4±\sqrt{16+8\times 6}}{2\left(-2\right)}
Nhân -4 với -2.
x=\frac{-4±\sqrt{16+48}}{2\left(-2\right)}
Nhân 8 với 6.
x=\frac{-4±\sqrt{64}}{2\left(-2\right)}
Cộng 16 vào 48.
x=\frac{-4±8}{2\left(-2\right)}
Lấy căn bậc hai của 64.
x=\frac{-4±8}{-4}
Nhân 2 với -2.
x=\frac{4}{-4}
Bây giờ, giải phương trình x=\frac{-4±8}{-4} khi ± là số dương. Cộng -4 vào 8.
x=-1
Chia 4 cho -4.
x=-\frac{12}{-4}
Bây giờ, giải phương trình x=\frac{-4±8}{-4} khi ± là số âm. Trừ 8 khỏi -4.
x=3
Chia -12 cho -4.
x=-1 x=3
Hiện phương trình đã được giải.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Biến x không thể bằng bất kỳ giá trị nào trong -2,0 vì phép chia cho số không là không xác định được. Nhân cả hai vế của phương trình với x\left(x+2\right), bội số chung nhỏ nhất của x,x+2.
3x+6+x\times 5=2x\left(x+2\right)
Sử dụng tính chất phân phối để nhân x+2 với 3.
8x+6=2x\left(x+2\right)
Kết hợp 3x và x\times 5 để có được 8x.
8x+6=2x^{2}+4x
Sử dụng tính chất phân phối để nhân 2x với x+2.
8x+6-2x^{2}=4x
Trừ 2x^{2} khỏi cả hai vế.
8x+6-2x^{2}-4x=0
Trừ 4x khỏi cả hai vế.
4x+6-2x^{2}=0
Kết hợp 8x và -4x để có được 4x.
4x-2x^{2}=-6
Trừ 6 khỏi cả hai vế. Số không trừ đi bất kỳ giá trị nào cũng bằng số âm của giá trị đó.
-2x^{2}+4x=-6
Có thể giải phương trình bậc hai như phương trình này bằng cách bù bình phương. Để thực hiện bù bình phương, trước hết, phương trình phải có dạng x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{6}{-2}
Chia cả hai vế cho -2.
x^{2}+\frac{4}{-2}x=-\frac{6}{-2}
Việc chia cho -2 sẽ làm mất phép nhân với -2.
x^{2}-2x=-\frac{6}{-2}
Chia 4 cho -2.
x^{2}-2x=3
Chia -6 cho -2.
x^{2}-2x+1=3+1
Chia -2, hệ số của số hạng x, cho 2 để có kết quả -1. Sau đó, cộng bình phương của -1 vào cả hai vế của phương trình. Bước này làm cho vế trái của phương trình thành số chính phương.
x^{2}-2x+1=4
Cộng 3 vào 1.
\left(x-1\right)^{2}=4
Phân tích x^{2}-2x+1 số. Nói chung, khi x^{2}+bx+c là hình vuông hoàn hảo, nó luôn có thể được phân tích thành thừa số \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Lấy căn bậc hai của cả hai vế của phương trình.
x-1=2 x-1=-2
Rút gọn.
x=3 x=-1
Cộng 1 vào cả hai vế của phương trình.