Tính giá trị
-\frac{\sqrt{6}}{9}+\frac{2}{3}\approx 0,39450114
Phân tích thành thừa số
\frac{\sqrt{6} {(\sqrt{6} - 1)}}{9} = 0,3945011396907579
Bài kiểm tra
Arithmetic
5 bài toán tương tự với:
\frac { 2 \sqrt { 3 } - \sqrt { 2 } } { 2 \sqrt { 3 } + \sqrt { 3 } }
Chia sẻ
Đã sao chép vào bảng tạm
\frac{2\sqrt{3}-\sqrt{2}}{3\sqrt{3}}
Kết hợp 2\sqrt{3} và \sqrt{3} để có được 3\sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Hữu tỷ hóa mẫu số của \frac{2\sqrt{3}-\sqrt{2}}{3\sqrt{3}} bằng cách nhân tử số và mẫu số với \sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{3\times 3}
Bình phương của \sqrt{3} là 3.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{9}
Nhân 3 với 3 để có được 9.
\frac{2\left(\sqrt{3}\right)^{2}-\sqrt{2}\sqrt{3}}{9}
Sử dụng tính chất phân phối để nhân 2\sqrt{3}-\sqrt{2} với \sqrt{3}.
\frac{2\times 3-\sqrt{2}\sqrt{3}}{9}
Bình phương của \sqrt{3} là 3.
\frac{6-\sqrt{2}\sqrt{3}}{9}
Nhân 2 với 3 để có được 6.
\frac{6-\sqrt{6}}{9}
Để nhân \sqrt{2} và \sqrt{3}, nhân các số trong căn bậc hai.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}