Tìm c (complex solution)
c=\frac{\cos(2x)+1}{\sin(2x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}
Tìm c
c=\cot(x)
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>\frac{\pi n_{1}}{2}\text{ and }x<\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)
Tìm x
x=2\pi n_{13}+\left(-1\right)\pi +ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})\text{, }n_{13}\in \mathrm{Z}\text{, }\exists n_{6}\in \mathrm{Z}\text{ : }\left(2\pi n_{13}+\left(-1\right)\pi +ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})>\frac{1}{2}\pi n_{6}\text{ and }2\pi n_{13}+\left(-1\right)\pi +ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})<\frac{1}{2}\pi \left(n_{6}+1\right)\right)
x=ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})+2\pi n_{351}\text{, }n_{351}\in \mathrm{Z}\text{, }\exists n_{6}\in \mathrm{Z}\text{ : }\left(ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})+2\pi n_{351}>\frac{1}{2}\pi n_{6}\text{ and }ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})+2\pi n_{351}<\frac{1}{2}\pi \left(n_{6}+1\right)\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})+2\pi n_{351}>\frac{1}{2}\pi n_{6}\text{ and }ArcCosI(c\left(1+c^{2}\right)^{-\frac{1}{2}})+2\pi n_{351}<\frac{1}{2}\pi \left(n_{6}+1\right)\right)
Đồ thị
Chia sẻ
Đã sao chép vào bảng tạm
\tan(x)+2c=\frac{\left(\sin(x)\right)^{2}+2\left(\cos(x)\right)^{2}}{\sin(x)\cos(x)}
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
2c=\frac{\left(\sin(x)\right)^{2}+2\left(\cos(x)\right)^{2}}{\sin(x)\cos(x)}-\tan(x)
Trừ \tan(x) khỏi cả hai vế.
2c=\frac{2\left(\cos(x)\right)^{2}+\left(\sin(x)\right)^{2}}{\frac{1}{2}\sin(2x)}-\tan(x)
Phương trình đang ở dạng chuẩn.
\frac{2c}{2}=\frac{2\cot(x)}{2}
Chia cả hai vế cho 2.
c=\frac{2\cot(x)}{2}
Việc chia cho 2 sẽ làm mất phép nhân với 2.
c=\cot(x)
Chia 2\cot(x) cho 2.
\tan(x)+2c=\frac{\left(\sin(x)\right)^{2}+2\left(\cos(x)\right)^{2}}{\sin(x)\cos(x)}
Đổi vế để tất cả các số hạng biến thiên đều ở bên trái.
2c=\frac{\left(\sin(x)\right)^{2}+2\left(\cos(x)\right)^{2}}{\sin(x)\cos(x)}-\tan(x)
Trừ \tan(x) khỏi cả hai vế.
2c=\frac{2\left(\cos(x)\right)^{2}+\left(\sin(x)\right)^{2}}{\frac{1}{2}\sin(2x)}-\tan(x)
Phương trình đang ở dạng chuẩn.
\frac{2c}{2}=\frac{2\cot(x)}{2}
Chia cả hai vế cho 2.
c=\frac{2\cot(x)}{2}
Việc chia cho 2 sẽ làm mất phép nhân với 2.
c=\cot(x)
Chia 2\cot(x) cho 2.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}