Tính giá trị
\frac{1}{h^{2}}
Lấy vi phân theo h
-\frac{2}{h^{3}}
Bài kiểm tra
Polynomial
\frac { \frac { 1 } { h } } { h }
Chia sẻ
Đã sao chép vào bảng tạm
\frac{1}{hh}
Thể hiện \frac{\frac{1}{h}}{h} dưới dạng phân số đơn.
\frac{1}{h^{2}}
Nhân h với h để có được h^{2}.
\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})+\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})
Đối với hai hàm khả vi bất kỳ, đạo hàm của tích hai hàm bằng hàm đầu tiên nhân với đạo hàm của hàm thứ hai cộng hàm thứ hai nhân với đạo hàm của hàm đầu tiên.
\frac{1}{h}\left(-1\right)h^{-1-1}+\frac{1}{h}\left(-1\right)h^{-1-1}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
\frac{1}{h}\left(-1\right)h^{-2}+\frac{1}{h}\left(-1\right)h^{-2}
Rút gọn.
-h^{-1-2}-h^{-1-2}
Để nhân lũy thừa của cùng một cơ số, hãy cộng các số mũ với nhau.
-h^{-3}-h^{-3}
Rút gọn.
\left(-1-1\right)h^{-3}
Kết hợp giống như các số hạng.
-2h^{-3}
Cộng -1 vào -1.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{1}h^{-1-1})
Để chia các lũy thừa của cùng một cơ số, hãy lấy số mũ của tử số trừ đi số mũ của mẫu số.
\frac{\mathrm{d}}{\mathrm{d}h}(h^{-2})
Thực hiện tính toán số học.
-2h^{-2-1}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
-2h^{-3}
Thực hiện tính toán số học.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}