Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Phân tích thành thừa số
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\left(x^{2}-1\right)^{2}-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Xét \left(x+1\right)\left(x-1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Bình phương 1.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Sử dụng định lý nhị thức \left(a-b\right)^{2}=a^{2}-2ab+b^{2} để bung rộng \left(x^{2}-1\right)^{2}.
x^{4}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
x^{4}-2x^{2}+1-\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Sử dụng định lý nhị thức \left(a+b\right)^{2}=a^{2}+2ab+b^{2} để bung rộng \left(2+x^{2}\right)^{2}.
x^{4}-2x^{2}+1-\left(4+4x^{2}+x^{4}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
x^{4}-2x^{2}+1-4-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Để tìm số đối của 4+4x^{2}+x^{4}, hãy tìm số đối của mỗi số hạng.
x^{4}-2x^{2}-3-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Lấy 1 trừ 4 để có được -3.
x^{4}-6x^{2}-3-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Kết hợp -2x^{2} và -4x^{2} để có được -6x^{2}.
-6x^{2}-3+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Kết hợp x^{4} và -x^{4} để có được 0.
-6x^{2}-3+\left(3x-\frac{9}{2}\right)\left(2x+3\right)
Sử dụng tính chất phân phối để nhân \frac{3}{2} với 2x-3.
-6x^{2}-3+6x^{2}-\frac{27}{2}
Sử dụng tính chất phân phối để nhân 3x-\frac{9}{2} với 2x+3 và kết hợp các số hạng tương đương.
-3-\frac{27}{2}
Kết hợp -6x^{2} và 6x^{2} để có được 0.
-\frac{33}{2}
Lấy -3 trừ \frac{27}{2} để có được -\frac{33}{2}.
\frac{2\left(\left(x+1\right)\left(x-1\right)\right)^{2}-2\left(2+x^{2}\right)^{2}+3\left(2x-3\right)\left(2x+3\right)}{2}
Phân tích \frac{1}{2} thành thừa số.
-\frac{33}{2}
Rút gọn.