Asosiy tarkibga oʻtish
Microsoft
|
Math Solver
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Asosiy
algebra
trigonometriya
hisoblash
Statistika
matrisalar
Harflar
Baholash
3a^{2}
a ga nisbatan hosilani topish
6a
Viktorina
Algebra
5xshash muammolar:
\sqrt{3} \times \sqrt{3a^4}
Veb-qidiruvdagi o'xshash muammolar
Simplify? \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}
https://socratic.org/questions/59e559a97c01496bf2104ce3
\displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}}={384}\sqrt{{6}} Explanation: \displaystyle\sqrt{{8}}\times\sqrt{{{48}^{{3}}}} Because both terms are under a square root sign, we can ...
How do you simplify \displaystyle{5}\sqrt{{{9}{t}^{{2}}}}\times{5}\sqrt{{{2}{t}}} ?
https://socratic.org/questions/how-do-you-simplify-5sqrt-9t-2-times5-sqrt-2t
See a solution process below: Explanation: First, simplify the radical on the left: \displaystyle{\left({5}\times{3}{t}\right)}\times{5}\sqrt{{{2}{t}}}\Rightarrow \displaystyle{15}{t}\times{5}\sqrt{{{2}{t}}}\Rightarrow ...
How do you simplify \displaystyle{3}\sqrt{{{5}{c}}}\times\sqrt{{15}}^{{3}} ?
https://socratic.org/questions/how-do-you-simplify-3sqrt-5c-times-sqrt15-3
\displaystyle{225}\sqrt{{{3}{c}}} Explanation: \displaystyle{3}\sqrt{{{5}{c}}}\sqrt{{{15}}}^{{3}} First, we can simplify \displaystyle\sqrt{{{15}}}^{{3}} . \displaystyle\sqrt{{{15}}}^{{3}}=\sqrt{{15}}\cdot\sqrt{{15}}\cdot\sqrt{{15}}={15}\cdot\sqrt{{15}} ...
Simplifying indices with surds
https://math.stackexchange.com/questions/1986172/simplifying-indices-with-surds
One way is to note that \left( \sqrt t \right)^3=t^{\frac 32} and similarly for the other one. Then when you multiply terms you add exponents
range of m such that the equation |x^2-3x+2|=mx has 4 real answers.
https://math.stackexchange.com/questions/1259271/range-of-m-such-that-the-equation-x2-3x2-mx-has-4-real-answers
There is some positive value m such that y=mx is tangent to y=-(x^2-3x+2). This value must make 0 the discriminant of the equation x^2-3x+2=-mx That is, m^2-6m+1=0 The least root of ...
Prove that there exists irrational numbers p and q such that p^{q} is rational
https://math.stackexchange.com/q/2883337
The irrationality of \sqrt 2^{\sqrt 2} (in fact, its transcendence) follows immediately from the Gelfond Schneider Theorem . This was the issue that motivated Hilbert's 7^{th} Problem. The ...
Ko'proq Elementlar
Baham ko'rish
Nusxa olish
Klipbordga nusxa olish
O'xshash muammolar
\sqrt{40}
\sqrt{99a^3}
\sqrt{\frac{16}{25}}
\sqrt{3} \times \sqrt{3a^4}
\sqrt{\sqrt{256a^8}}
\sqrt{196}
Yuqoriga qaytish