Asosiy tarkibga oʻtish
Microsoft
|
Math Solver
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Asosiy
algebra
trigonometriya
hisoblash
Statistika
matrisalar
Harflar
Baholash
5
Viktorina
Limits
\lim_{ x \rightarrow 0 } 5
Veb-qidiruvdagi o'xshash muammolar
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Ko'proq Elementlar
Baham ko'rish
Nusxa olish
Klipbordga nusxa olish
O'xshash muammolar
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Yuqoriga qaytish