\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.
x, y uchun yechish
x=\frac{15}{26}\approx 0,576923077
y=-\frac{23}{26}\approx -0,884615385
Grafik
Baham ko'rish
Klipbordga nusxa olish
x-5y=5
Birinchi tenglamani yeching. Ikkala tarafdan 5y ni ayirish.
x-5y=5,6x-4y=7
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x-5y=5
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=5y+5
5y ni tenglamaning ikkala tarafiga qo'shish.
6\left(5y+5\right)-4y=7
5+5y ni x uchun boshqa tenglamada almashtirish, 6x-4y=7.
30y+30-4y=7
6 ni 5+5y marotabaga ko'paytirish.
26y+30=7
30y ni -4y ga qo'shish.
26y=-23
Tenglamaning ikkala tarafidan 30 ni ayirish.
y=-\frac{23}{26}
Ikki tarafini 26 ga bo‘ling.
x=5\left(-\frac{23}{26}\right)+5
-\frac{23}{26} ni y uchun x=5y+5 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-\frac{115}{26}+5
5 ni -\frac{23}{26} marotabaga ko'paytirish.
x=\frac{15}{26}
5 ni -\frac{115}{26} ga qo'shish.
x=\frac{15}{26},y=-\frac{23}{26}
Tizim hal qilindi.
x-5y=5
Birinchi tenglamani yeching. Ikkala tarafdan 5y ni ayirish.
x-5y=5,6x-4y=7
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-5\times 6\right)}&-\frac{-5}{-4-\left(-5\times 6\right)}\\-\frac{6}{-4-\left(-5\times 6\right)}&\frac{1}{-4-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&\frac{5}{26}\\-\frac{3}{13}&\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\times 5+\frac{5}{26}\times 7\\-\frac{3}{13}\times 5+\frac{1}{26}\times 7\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{26}\\-\frac{23}{26}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=\frac{15}{26},y=-\frac{23}{26}
x va y matritsa elementlarini chiqarib olish.
x-5y=5
Birinchi tenglamani yeching. Ikkala tarafdan 5y ni ayirish.
x-5y=5,6x-4y=7
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
6x+6\left(-5\right)y=6\times 5,6x-4y=7
x va 6x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 6 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
6x-30y=30,6x-4y=7
Qisqartirish.
6x-6x-30y+4y=30-7
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 6x-30y=30 dan 6x-4y=7 ni ayirish.
-30y+4y=30-7
6x ni -6x ga qo'shish. 6x va -6x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-26y=30-7
-30y ni 4y ga qo'shish.
-26y=23
30 ni -7 ga qo'shish.
y=-\frac{23}{26}
Ikki tarafini -26 ga bo‘ling.
6x-4\left(-\frac{23}{26}\right)=7
-\frac{23}{26} ni y uchun 6x-4y=7 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
6x+\frac{46}{13}=7
-4 ni -\frac{23}{26} marotabaga ko'paytirish.
6x=\frac{45}{13}
Tenglamaning ikkala tarafidan \frac{46}{13} ni ayirish.
x=\frac{15}{26}
Ikki tarafini 6 ga bo‘ling.
x=\frac{15}{26},y=-\frac{23}{26}
Tizim hal qilindi.
O'xshash muammolar
\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.
\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.
\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { x = y + 2z } \\ { 3 x - z = 7 } \\ { 3 z - y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.