اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
عنصر
Tick mark Image

متعلقہ تصورات

پائی
پائی
ایک دائرے کے گھیر (circumference) کا اس کے قطر (diameter) سے نسبت کو پائی (Pi) یا ط (عربی سے ماخوذ) کہتے ہیں اور یہ قریبا 3.14159 کے برابر ہے۔ آسانی کے لیے کسر (fraction) میں اس کی قدر 22/7 کے قریب بھی لکھی نظر آتی ہے۔ یہ ریاضی اور ہندسہ (geometry) میں بکثرت استعمال ہوتا ہے۔ پائی کو یونانی حرف π سے ظاہر کیا جاتا ہے۔ پائی ایک ریاضیاتی مستقل (constant) ہے۔ بنیادی طور پر اس کی تعریف یوں ہے، ’’ایک دائرے کے محیط کا اس کے قطر سے نسبت کو پائی کہتے ہیں‘‘۔ لیکن اب اس کی کئی ایک جیسی تعریفیں ہیں جو ریاضی اور طبیعیات کے بہت سے کلیات (formula) میں استعمال ہوتی ہیں۔ اس کی قیمت تقریباً 3.14159 کے برابر ہوتی ہے۔ اٹھارویں صدی کے وسط سے اس کو ایک یونانی لفظ " π" سے ظاہر کیا جاتا ہے۔ اس کو لفظ ’’پائی‘‘ سے پکارا جاتا ہے۔ غیر ناطق عدد ہونے کی وجہ سے پائی کو کسر عام میں ظاہر نہیں کیا جا سکتا ہے۔ عام طور پر کچھ کسور اور دوسرے ناطق اعداد جیسے 22/7 کو تقریباً پائی کے برابر سمجھا جاتا ہے۔ عام طور پر پائی کے ہندسوں کی ترتیب کو ایک خاص قسم کی شماریاتی بے ترتیبی سے قیاس کیا جاتا ہے لیکن ابھی تک اس کا کوئی ثبوت دریافت نہیں ہوا۔ پائی ایک ماورائی عدد ہے ماورائی عدد ایک ایسا عدد ہوتا ہے جو کسی ناطق عددی سر رکھنے والے غیر صفری کثیر الاسمی (polynomial) کا جزر نہ ہو۔ پائی کی ماورائیت سے مراد یہ ہے کہ پرکار اور فٹُے کی مدد سے ایک مخصوص سائز کے دائرے کو اس سائز کے مربع میں تبدیل کرنا ناممکن ہے اور یہ ایک قدیم معما ہے جو آج تک حل نہیں ہو سکا۔ قدیم تہذیبیں جن میں مصری تہذیب اور بابلی تہذیب شامل ہے کو عملی طور پائی کی واضح اور درست قیمت کی ضرورت ہوتی تھی۔ تقریباً 250 ق م میں یونانی ریاضی دان ارشمیدس نے پائی کے حساب کے لیے ایک الگورتھم بنایا۔ پانچویں صدی عیسوی میں نقطہ اعشاریہ کے بعد پائی کی قیمت چینی ریاضی میں تقریباً سات ہندسوں پر مشتمل تھی جبکہ ہندی ریاضی میں تقریباً پانچ ہندسوں پر مشتمل تھی۔ تاریخی طور پر اس کے ہزار سال بعد بھی پائی کا ایسا کلیہ جو لامتناہی سلسلے پر مشتمل ہو موجود نہ تھا۔ حتی کہ چودہویں صدی عیسوی میں ہندی ریاضی میں مدہاوا لیبنز سلسلہ( Madhava–Leibniz series )دریافت ہوا۔ بیسویں اور اکیسویں صدی عیسوی میں ریاضی دانوں اور کمپیوٹر کے سائنسدانوں نے پائی کو نئی جہت دی۔ کمپیوٹر کی حسابی طاقت نے پائی کو نقطہ اعشاریہ کے بعد کئی ٹریلین ہندسوں تک بڑھا دیا۔ عملی طور پر ریاضی کے حسابات میں پائی کے نقطہ اعشاریہ کے بعد چند سو ہندسوں کی ضرورت ہوتی ہے، جبکہ اس سے زیادہ کے حسابات سپر کمپیوٹر کو ٹیسٹ کرنے کے لیے یا اعلیٰ معیار کی لوگرتھم کے حسابات کے لیے استعمال ہوتے ہیں۔ پائی جیومیٹری اور تکونیات کے بہت سے کلیات میں استعمال ہوتا ہے خصوصی طور پر ان میں جن کا تعلق دائرہ اور کرہ یا بیضوی شکل سے ہو۔ اس کے علاوہ پائی طبیعیات کے بہت سے میدانوں میں استعمال ہوتا ہے۔ عالمی سطح پر پائی کی اہمیت کو اجاگر کرنے کے لیے یومِ پائی منایا جاتا ہے۔ یہ دن ہر سال مارچ کی چودہ تاریخ کو منایا جاتا ہے۔

ویب سرچ سے اسی طرح کے مسائل

حصہ

1
مثلثیاتی اقدار کے جدول سے \sin(\frac{\pi }{2}) کی قدر حاصل کریں.