Знайдіть x
x=4\left(4-y\right)^{2}-2
8-2y\geq 0
Знайдіть x (complex solution)
x=4\left(4-y\right)^{2}-2
y=4\text{ or }arg(8-2y)<\pi
Знайдіть y (complex solution)
y=-\frac{\sqrt{x+2}}{2}+4
Знайдіть y
y=-\frac{\sqrt{x+2}}{2}+4
x\geq -2
Графік
Ділити
Скопійовано в буфер обміну
y=-\frac{1}{2}\sqrt{x+2}+4
Дріб \frac{-1}{2} можна записати як -\frac{1}{2}, виділивши знак "мінус".
-\frac{1}{2}\sqrt{x+2}+4=y
Перенесіть усі змінні члени до лівої частини рівняння.
-\frac{1}{2}\sqrt{x+2}=y-4
Відніміть 4 з обох сторін.
\frac{-\frac{1}{2}\sqrt{x+2}}{-\frac{1}{2}}=\frac{y-4}{-\frac{1}{2}}
Помножте обидві сторони на -2.
\sqrt{x+2}=\frac{y-4}{-\frac{1}{2}}
Ділення на -\frac{1}{2} скасовує множення на -\frac{1}{2}.
\sqrt{x+2}=8-2y
Розділіть y-4 на -\frac{1}{2}, помноживши y-4 на величину, обернену до -\frac{1}{2}.
x+2=4\left(4-y\right)^{2}
Піднесіть до квадрата обидві сторони рівняння.
x+2-2=4\left(4-y\right)^{2}-2
Відніміть 2 від обох сторін цього рівняння.
x=4\left(4-y\right)^{2}-2
Якщо відняти 2 від самого себе, залишиться 0.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}