Знайдіть x
x=1
Графік
Ділити
Скопійовано в буфер обміну
xx+x=2x
Змінна x не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x.
x^{2}+x=2x
Помножте x на x, щоб отримати x^{2}.
x^{2}+x-2x=0
Відніміть 2x з обох сторін.
x^{2}-x=0
Додайте x до -2x, щоб отримати -x.
x\left(x-1\right)=0
Винесіть x за дужки.
x=0 x=1
Щоб знайти рішення для формул, Розв'яжіть x=0 та x-1=0.
x=1
Змінна x не може дорівнювати 0.
xx+x=2x
Змінна x не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x.
x^{2}+x=2x
Помножте x на x, щоб отримати x^{2}.
x^{2}+x-2x=0
Відніміть 2x з обох сторін.
x^{2}-x=0
Додайте x до -2x, щоб отримати -x.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -1 замість b і 0 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2}
Видобудьте квадратний корінь із 1.
x=\frac{1±1}{2}
Число, протилежне до -1, дорівнює 1.
x=\frac{2}{2}
Тепер розв’яжіть рівняння x=\frac{1±1}{2} за додатного значення ±. Додайте 1 до 1.
x=1
Розділіть 2 на 2.
x=\frac{0}{2}
Тепер розв’яжіть рівняння x=\frac{1±1}{2} за від’ємного значення ±. Відніміть 1 від 1.
x=0
Розділіть 0 на 2.
x=1 x=0
Тепер рівняння розв’язано.
x=1
Змінна x не може дорівнювати 0.
xx+x=2x
Змінна x не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x.
x^{2}+x=2x
Помножте x на x, щоб отримати x^{2}.
x^{2}+x-2x=0
Відніміть 2x з обох сторін.
x^{2}-x=0
Додайте x до -2x, щоб отримати -x.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Поділіть -1 (коефіцієнт члена x) на 2, щоб отримати -\frac{1}{2}. Потім додайте -\frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Щоб піднести -\frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Розкладіть x^{2}-x+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Виконайте спрощення.
x=1 x=0
Додайте \frac{1}{2} до обох сторін цього рівняння.
x=1
Змінна x не може дорівнювати 0.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}