Обчислити
\frac{\left(x-2\right)\left(x+3\right)}{x-1}
Диференціювати за x
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
Графік
Ділити
Скопійовано в буфер обміну
\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте x+2 на \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x-1\right)-4}{x-1}
Оскільки знаменник дробів \frac{\left(x+2\right)\left(x-1\right)}{x-1} і \frac{4}{x-1} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{x^{2}-x+2x-2-4}{x-1}
Виконайте множення у виразі \left(x+2\right)\left(x-1\right)-4.
\frac{x^{2}+x-6}{x-1}
Зведіть подібні члени у виразі x^{2}-x+2x-2-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1})
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте x+2 на \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)-4}{x-1})
Оскільки знаменник дробів \frac{\left(x+2\right)\left(x-1\right)}{x-1} і \frac{4}{x-1} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+2x-2-4}{x-1})
Виконайте множення у виразі \left(x+2\right)\left(x-1\right)-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-6}{x-1})
Зведіть подібні члени у виразі x^{2}-x+2x-2-4.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}-6)-\left(x^{2}+x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
Для будь-яких двох диференційовних функцій похідна їхньої частки дорівнює дробу: різниця добутку знаменника на похідну чисельника та добутку чисельника на похідну знаменника, розділена на квадрат знаменника.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+x^{1-1}\right)-\left(x^{2}+x^{1}-6\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+x^{0}\right)-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Виконайте спрощення.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Помножте x^{1}-1 на 2x^{1}+x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}x^{0}+x^{1}x^{0}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Помножте x^{2}+x^{1}-6 на x^{0}.
\frac{2x^{1+1}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Щоб перемножити степені з однаковими основами, просто додайте їхні показники.
\frac{2x^{2}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Виконайте спрощення.
\frac{x^{2}-2x^{1}+5x^{0}}{\left(x^{1}-1\right)^{2}}
Зведіть подібні члени.
\frac{x^{2}-2x+5x^{0}}{\left(x-1\right)^{2}}
Для будь-якого члена t дійсне таке правило: t^{1}=t.
\frac{x^{2}-2x+5\times 1}{\left(x-1\right)^{2}}
Для будь-якого члена t, окрім 0, t^{0}=1.
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
Для будь-якого члена t дійсне таке правило: t\times 1=t і 1t=t.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}