Знайдіть x
x = \frac{\sqrt{5} + 1}{2} \approx 1,618033989
x=\frac{1-\sqrt{5}}{2}\approx -0,618033989
Графік
Ділити
Скопійовано в буфер обміну
xx-1=x
Змінна x не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x.
x^{2}-1=x
Помножте x на x, щоб отримати x^{2}.
x^{2}-1-x=0
Відніміть x з обох сторін.
x^{2}-x-1=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -1 замість b і -1 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Помножте -4 на -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
Додайте 1 до 4.
x=\frac{1±\sqrt{5}}{2}
Число, протилежне до -1, дорівнює 1.
x=\frac{\sqrt{5}+1}{2}
Тепер розв’яжіть рівняння x=\frac{1±\sqrt{5}}{2} за додатного значення ±. Додайте 1 до \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Тепер розв’яжіть рівняння x=\frac{1±\sqrt{5}}{2} за від’ємного значення ±. Відніміть \sqrt{5} від 1.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Тепер рівняння розв’язано.
xx-1=x
Змінна x не може дорівнювати 0, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на x.
x^{2}-1=x
Помножте x на x, щоб отримати x^{2}.
x^{2}-1-x=0
Відніміть x з обох сторін.
x^{2}-x=1
Додайте 1 до обох сторін. Якщо додати нуль до будь-якого числа, воно не зміниться.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Поділіть -1 (коефіцієнт члена x) на 2, щоб отримати -\frac{1}{2}. Потім додайте -\frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Щоб піднести -\frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
Додайте 1 до \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
Розкладіть x^{2}-x+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Виконайте спрощення.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Додайте \frac{1}{2} до обох сторін цього рівняння.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}