Перейти до основного контенту
Знайдіть x (complex solution)
Tick mark Image
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

x^{3}-3+2=0
Додайте 2 до обох сторін.
x^{3}-1=0
Додайте -3 до 2, щоб обчислити -1.
±1
За теоремою про раціональні корені всі раціональні корені многочлена мають вигляд \frac{p}{q}, де p ділить вільний член -1, а q ділить старший коефіцієнт многочлена 1. Перелічіть всі можливі \frac{p}{q}.
x=1
Знайдіть один такий корінь, перебравши всі цілі значення, починаючи з найменшого за модулем. Якщо не вдалося знайти жодного цілого кореня, спробуйте дроби.
x^{2}+x+1=0
За допомогою Ньютона, x-k – це коефіцієнт полінома для кожного кореневого k. Розділіть x^{3}-1 на x-1, щоб отримати x^{2}+x+1. Розв'яжіть рівняння, у якій результат дорівнює 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Усі рівняння вигляду ax^{2}+bx+c=0 можна вирішити за допомогою загальної формули для квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замініть у цій формулі 1 на a, 1 – на b, а 1 – на c.
x=\frac{-1±\sqrt{-3}}{2}
Виконайте арифметичні операції.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Розв’яжіть рівняння x^{2}+x+1=0 для випадку, коли замість ± використовується знак "плюс", і коли замість ± використовується знак "мінус".
x=1 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Список усіх знайдених рішень.
x^{3}-3+2=0
Додайте 2 до обох сторін.
x^{3}-1=0
Додайте -3 до 2, щоб обчислити -1.
±1
За теоремою про раціональні корені всі раціональні корені многочлена мають вигляд \frac{p}{q}, де p ділить вільний член -1, а q ділить старший коефіцієнт многочлена 1. Перелічіть всі можливі \frac{p}{q}.
x=1
Знайдіть один такий корінь, перебравши всі цілі значення, починаючи з найменшого за модулем. Якщо не вдалося знайти жодного цілого кореня, спробуйте дроби.
x^{2}+x+1=0
За допомогою Ньютона, x-k – це коефіцієнт полінома для кожного кореневого k. Розділіть x^{3}-1 на x-1, щоб отримати x^{2}+x+1. Розв'яжіть рівняння, у якій результат дорівнює 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Усі рівняння вигляду ax^{2}+bx+c=0 можна вирішити за допомогою загальної формули для квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замініть у цій формулі 1 на a, 1 – на b, а 1 – на c.
x=\frac{-1±\sqrt{-3}}{2}
Виконайте арифметичні операції.
x\in \emptyset
Оскільки квадратний корінь із від’ємного числа не визначений на множині дійсних чисел, розв’язку немає.
x=1
Список усіх знайдених рішень.